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A B S T R A C T   

Considering local adaptation has been increasingly involved in forecasting species distributions under climate 
change and the management of species conservation. Herein, we take the critically endangered Chinese giant 
salamander (Andrias davidianus) that has both a low dispersal ability and distinct population divergence in 
different regions as an example. Basin-scale models that represent different populations in the Huanghe River 
Basin (HRB), the Yangtze River Basin (YRB), and the Pearl River Basin (PRB) were established using ensemble 
species distribution models. The species ranges under the future human population density (HPD) and climate 
change were predicted, and the range loss was evaluated for local basins in 2050 and 2070. Our results showed 
that the predominant factors affecting species distributions differed among basins, and the responses of the 
species occurrence to HPD and climate factors were distinctly different from northern to southern basins. Future 
HPD changes would be the most influential factor that engenders negative impacts on the species distribution in 
all three basins, especially in the HRB. Climate change will likely be less prominent in decreasing the species 
range, excluding in the YRB and PRB under the highest-emissions scenario in 2050. Overall, the high-emissions 
scenario would more significantly aggravate the negative impacts produced by HPD change in both 2050 and 
2070, with maximum losses of species ranges in the HRB, YRB, and PRB of 83.4%, 60.0%, and 53.5%, respec-
tively, under the scenarios of the combined impacts of HPD and climate changes. We proposed adapted con-
servation policies to effectively protect the habitat of this critically endangered animal in different basins based 
on the outcomes. Our research addresses the importance of incorporating local adaptation into species distri-
bution modeling to inform conservation and management decisions.   

1. Introduction 

Determining where and how species will respond to climate change 
is currently a pivotal topic in biogeography and conservation biology 
research, which can provide great knowledge to help formulate con-
servation and management strategies to mitigate the extinction risks of 
endangered species (Chardon et al., 2019). Species distribution models 
(SDMs) are commonly employed approaches that explore how the dis-
tribution of a species of concern will shift in space and time with a 
changing climate (Pacifici et al., 2015). Such models correlate species 

occurrences with bioclimatic factors to predict the relative probability of 
occurrence by assuming that species track alongside the changing cli-
matic conditions (Elith and Leathwick 2009; Booth et al., 2014). Given 
their simplicity and flexibility (Thuiller et al., 2009), as well as the easy 
accessibility of species occurrence records and climate datasets, SDMs 
are widely utilized to predict species’ range shifts across the globe and 
guide the conservation management of species in all earth spheres 
(García-Alegre et al., 2014; Gobeyn and Goethals 2019; Pecchi et al., 
2019). 

Despite their widespread use, SDMs have been criticized for 
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involving assumptions that ignore many ecologically relevant factors 
(Araújo and Peterson 2012). One of the potential sources of model error 
that has been of increasing concern is the assumption that species across 
populations are ecologically uniform in their climatic tolerances within 
their range (Wiens et al., 2009). Typically, SDMs treat a species as a 
single entity (Busby 1988) and are developed utilizing all the occurrence 
data of a species in the whole area to project its potential distribution 
(Merow et al., 2013). Substantial evidence has shown that the distri-
bution limits of many species vary among populations and that climate 
tolerances differ among distribution areas due to adaptation to local 
climate conditions (Sheth and Angert 2014; Lee-Yaw et al., 2016). 
Despite this, most models assume that species’ tolerances to climate 
changes do not differ across distributional ranges (Valladares et al., 
2014). Uncertainties and errors in geographic distribution predictions 
can be produced by not considering local adaptation (Pearman et al., 
2010; Peterson et al., 2019), which preclude the analysis of genetic 
variation in ecologically important traits (Marcer et al., 2016). 

Local adaptation most likely exists within species whose distribution, 
dispersal, and population dynamics are affected by natural barriers, 
including physical and biological barriers (Cozzi et al., 2013). Relevant 
physical barriers may include geographical and topographical events 
that result in discontinuous habitats (Aliaga-Samanez et al., 2020) and 
biological barriers that may include interspecific competition and 
changes in the trophic habitat (Hallfors et al., 2016; Aliaga-Samanez 
et al., 2020). Very recent research indicated that a growing number of 
studies are emphasizing the importance of incorporating different forms 
of local adaptation or intraspecific variation in climate responses 
(Chardon et al., 2019; Peterson et al., 2019). When modeling range 
shifts under climate change with the incorporation of local adaptation, 
individuals within species were divided into groups with different 
climate responses based on taxonomic units, populations, geographic 
regions, phenotypes or genetic groups (Pearman et al., 2010; Kapeller 
et al., 2012; Marcer et al., 2016; Schwalm et al., 2016; Meynard et al., 
2017; Peterson et al., 2019). Among the existing studies that incorpo-
rated local adaptation, few examined the adaptation patterns of non-
climatic variables that could characterize the environmental tolerances 
of a species(Peterson et al., 2019). At least three studies have considered 
adaptations to local environmental conditions other than climate factors 
(Wang et al., 2010; Schwalm et al., 2016; Hu et al., 2017); however, all 
of them assumed the nonclimatic variables to remain static over time 
when predicting future conditions. Therefore, how differences in local 
adaptation to human-related pressures could affect future predicted 
range shifts remains poorly documented. 

Since SDMs are widely used to support conservation or management 
decisions, not taking local adaptation into account may lead to inaccu-
rate descriptions of species responses to environmental changes across 
their geographic ranges and, therefore, misplaced conservation efforts, 
especially for critically endangered species (Hamann and Aitken 2013). 
Amphibians represent the most threatened vertebrates around the world 
(Zhang et al., 2019). especially salamanders, which are highly sensitive 
to climate change because of their low vagility and restrictive physio-
logical demands (Barrett and Guyer 2008). Unlike species that can track 
varying climates, salamanders will suffer range shrinkage when the 
climate condition in their distribution areas become unsuitable to sus-
tain their populations (Araújo et al., 2006). Therefore, salamanders are 
likely to have distinct local adaptations because of their strong climatic 
requirements, and their wild populations are varied in community 
structure and ecosystem function in different biogeographic regions 
(Kozak and Wiens 2006; Ficetola et al., 2016). Human pressures from 
anthropic activities serve as yet another threat to salamanders’ wild 
population and are likely to aggravate existing stresses (Hof et al., 
2011). Therefore, it is fundamental to figure out how the salamanders’ 
ranges will respond to future disturbances from exacerbated human 
pressures and future climate change to ensure efficient management and 
conservation. 

In the present study, we addressed intraspecific variation in 

responses to climate and human-related factors in distribution models to 
explore how it will affect conservation management. We take the criti-
cally endangered Chinese giant salamander (CGS; Andrias davidianus 
(Blanchard, 1871)) as a case. It is known to be historically distributed in 
most of mainland China. Its wild populations and habitat have been 
declining due to habitat destruction and hunting for use in medicinal 
herbs and foods, and the species is currently critically endangered (Yan 
et al., 2018). We separated the region into three basins, i.e. the Huang 
River (Yellow River) basin and its adjacent Hai River Basin, the Yangtze 
River basin, and the Pearl River basin. Basin-scale SDMs were con-
structed by considering the effects of both climate and human-related 
factors on the range shifts. This study aims to: (1) test whether 
basin-scale models describing separate populations are reliable in spe-
cies distribution modeling; (2) describe whether the species responses to 
climate and human-related variables varied among geographical re-
gions; (3) quantify the species range shifts impacted by human pressures 
and climate change in separate areas; and (4) to help guide management 
and conservation efforts for the CGS based on these outcomes. 

2. Methods 

2.1. Species occurrence and data grouping 

The CGS is recognized as the world’s largest amphibian. It is one of 
the three extant giant salamanders that are Cryptobranchidae living in 
aquatic habitats (Zhang et al., 2019). Due to habitat loss and human 
consumption, their population has sharply declined over the past de-
cades. The species has been classified as a critically endangered animal 
by the Chinese government, included in Appendix I listed species of 
CITIES and listed as “CR” in the IUCN Red List of Threatened Species 
(Yan et al., 2018). The occurrence data of CGS were collected from the 
literature (Wen 2015; Turvey et al., 2018), the Global Biodiversity In-
formation Facility (GBIF; http://www.data.gbif.org/), and the geo-
database of the natural reserves (https://www.osgeo.cn/data/). The 
period covered by these data was from the late 20th century to the early 
part of this century. The occurrence data were located mainly in the 
Huang River (Yellow River) basin (HRB), the Yangtze River basin (YRB), 
and the Pearl River basin (PRB), as well as adjacent rivers and basins 
(Fig. 1). We retained 259 occurrence records after discarding erroneous 

Fig. 1. Location of the study basins.  
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(e.g., records far from waters) and duplicate records. We selected only 
one record in each model grid to diminish the spatial autocorrelation of 
presence records (i.e., more than one presence record in one environ-
mental grid cell with a 30 arc-second spatial resolution, ca. 1.0 km2 at 
the equator) through a spatial thinning method provided by Boria et al. 
(2014), and 253 occurrences datasets finally remained for model 
construction. 

Due to its limited ability to disperse, particularly between river 
systems, the CGS distributions were geographically partitioned and 
confined in neighboring regions (Liang et al., 2019). Considerable 
studies have found genetic diversity and variability among the CGS 
populations across the whole distribution area based on molecular 
analysis (Liang et al., 2019). For instance. Tao et al. (2005) discovered 
significant genetic differentiation between populations in the PRB and 
the YRB and between populations in the YRB and the PRB by applying 
mitochondrial DNA sequencing. Yang et al. (2011) used AFLP makers 
and found significant genetic diversity from northern to southern China 
The high population differentiation likely originated in association with 
their lower dispersal ability and geographical barriers (including 
mountains and drainages), as well as their specific habitat requirements 
(Liang et al., 2019). Based on these studies, we divided all the occur-
rences into three populations from north to south. The northern popu-
lation involved the occurrence located in the HRB and its adjacent Hai 
River Basin (n = 33); the central population included the occurrence 
located in the YRB (n = 172), and the southern population contained the 
occurrence located in the PRB (n = 28). Other occurrences located in 
Huai River Basin (HuRB, n = 8) and South-eastern River Basin (SRB, n =
12) were classified as unknown populations. We developed a model at 
the species level with all the occurrences for the whole area (model 
name “M_Whole”) and three separate basin-scale models for the pop-
ulations in the HRB and Hai River Basin, the YRB, and the PRB (model 
names: “M_HRB”, “M_YRB” and “M_PRB”). The basin-scale models were 
used to test the spatial transferability to other basins and compared with 
the model including the whole occurrence dataset. 

2.2. Model establishment 

We applied the ensemble modeling technique to develop SDMs of the 
CGS by considering their reliability in reducing the uncertainties from a 
single modeling algorithm and providing robust projections of species 
distribution (Grenouillet et al., 2011). We used four model algorithms, i. 
e. the generalized linear model (GLM), generalized boosting model 
(GBM), random forest (RF), and multiple adaptive regression splines 
(MARS) model, which have been frequently employed in SDMs to 
develop the ensemble models (Zhang et al., 2020a). All the model al-
gorithms and the ensemble model were implemented by the biomod2 
package in the software R 3.6.1(Thuiller et al., 2009). Since we used 
presence-absence algorithms and reliable absence data are not available, 
pseudo-absence records with the same number of presence records 
within the local basin for each model scenario were generated using a 
random method that can exclude pixels in the presence locations (Bar-
bet-Massin et al., 2012). Afterward, all the presence and pseudo-absence 
records were combined and shuffled for ultimate use in model con-
struction (Senay et al., 2013). For each model algorithms, 70% of all 
records were randomly chosen for model calibration, and the remaining 
30% was used to assess the algorithm performance. Each model algo-
rithm was run 10 times to avoid bias from the splitting of the total re-
cords. The predictive abilities of each model were evaluated using the 
true skill statistic (TSS) and the area under the receiver operating 
characteristic curve (AUC) (Swets 1988). To ensure the optimal pre-
dictive ability, algorithms with a TSS score greater than 0.6 and AUC 
score greater than 0.8 (Allouche et al., 2006) were selected to develop 
ensemble models by the committee-averaged method. We also deter-
mined the relative importance of the selected predictors using an inbuilt 
randomization procedure (Thuiller et al., 2016) and the response curves 
of species occurrence for each algorithm using the evaluation strip 

method (Elith et al., 2005). 

2.3. Predictor selection 

The selection of predictors in SDMs can strongly affect the reliability 
of the predicted niche and spatiotemporal transferability (Peterson 
et al., 2007). Recent research tested 19 bioclimatic variables and 11 
nonclimatic variables, including eight human-related variables, to pre-
dict the species distribution of the CGS for the whole potential distri-
bution area in China (Zhang et al., 2020a). Through analysis of the 
variable collinearity, contribution, and reasonability, four climate var-
iables, and three nonclimatic variables were finally selected as impor-
tant predictors and showed a good performance in distribution modeling 
and prediction of the species in that study. In the present study, how-
ever, as only about forty occurrence data points were used for model 
calibration for the HRB and PRB (70% of the whole presence and 
pseudoabsence data), we selected the four most important variables 
from the seven variables (see Table 1 in Zhang et al. (2020a) to meet the 
empirical rule of the use of a maximum of one predictor for ten data 
points to avoid overparameterization of the models(Harrell et al., 1984; 
Petitpierre et al., 2017). The four predictors included three bioclimatic 
variables, i.e., the temperature seasonality (TS), the mean temperature 
of the coldest quarter (MTCQ), and the precipitation of the warmest 
quarter (PWQ) accessed from the WorldClim data website (htt 
ps://www.worldclim.org/data/index.html), and the human popula-
tion density (HPD) from SEDAC (http://sedac.ciesin.columbia.edu). 
Despite the small number of predictors, these four variables were 
regarded as the most relevant factors affecting the distribution of the 
CGS, as the contributions of the other three variables to species occur-
rence were all less than 5% (Zhang et al., 2020a). We used the four 
selected variables in the four basal model algorithms and ensemble 
models to predict current and future species distributions at the 
basin-scale and over the whole area. 

2.4. Model prediction and evaluation 

The CGS distributions under the current (1950–2000) and future 
(2050 and 2070) climate conditions with and without the impact of 
future HPD change for three separate basins and the whole area were 
projected. We considered two representative concentration pathways 
(RCPs) for climate change, the optimistic scenario with stringent miti-
gation (RCP 2.6) and the pessimistic scenario (RCP 8.5). Future climate 
data were derived from three global circulation models (GCMs) (MIR-
OCESM-CHEM, CCSM4, and BCC-CSM1-1) that are widely used in Asia. 
To reduce uncertainties in the prediction of the species occurrence 
probability, the averaged outputs of the three GCMs were used as future 
climates. We obtained future HPD data at a spatial resolution of 1 km for 
2050 and 2070 from the global population dataset of the Socioeconomic 
Data and Applications Center (SEDAC) (Jones and O’Neill 2016). 

For real application and model evaluation, species presence and 
absence maps are required and obtained through transforming the 
continuous suitability predictions produced by SDMs to binary outputs 
using threshold values. We applied the mean of the predicted proba-
bilities of species occurrences that can objectively maximize the agree-
ment between observed and predicted distributions (Cramer 2003; Liu 
et al., 2005), as the threshold to determine the species range (Zhang 
et al., 2020a). This method was suggested to be reliable in transforming 
SDM results from presence probabilities to presences/absences binary 
maps (Liu 2005; Liu et al., 2013; França and Cabral 2019). For each 
basin-scale model, the threshold was calculated separately, and range 
sizes under current and future conditions were quantified based on the 
presence/absence map. The changes of the range size in the scenarios of 
HPD and climate changes relative to the current condition were calcu-
lated and compared among the three basins. 
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3. Results 

3.1. Model performance 

For each basin-scale model, most model algorithms performed well 
when assessed with AUC and TSS, with their median values being 
greater than 0.8 and 0.6, respectively (Supplementary Fig. S1). Of the 
four model algorithms, RF always performed better compared to others 
for all basin-scale models. Among the 40 basal models, 31, 36, and 29 
basal models were respectively selected to develop the ensemble SDMs 
for the HRB, YRB, and PRB (Table 1). For the model with all the oc-
currences for the whole area, it is not surprising that all basal models 
performed better compared to those in the basin-scale models, and all 
the basal models were retained to establish the ensemble models. 
However, the ensemble model for each basin-scale model also showed 
high accuracy, with AUC≧0.94 and TSS≧0.0.80 for all the basins, indi-
cating that basin-scale ensemble models could be reliable in species 
distribution modeling. In terms of predicted mean probabilities (MP) of 
species occurrence (Table 1), the whole-area model performed slightly 
better for the YRB (0.93) than the YRB model (0.90). The predicted MP 
values for the HRB and PRB (0.75 and 0.79), however, were lower than 
those by the local basin models (0.83 and 0.88), indicating the improved 
capabilities of basin-scale models in modeling the local distribution of 
the CGS. 

3.2. Variable importance and response curves 

For the whole-area model, the importance of all four predictors was 
greater than 10%, with the MTCQ (32.6 ± 2.5%) and HPD (26.8 ± 1.9%) 
being more important than the other two (Table 2). However, the allo-
cation of the variable importance considerably changed for the basin- 
scale models. For the HRB model, the most important variable was the 
HPD (mean of 40.7%), while the MTCQ played a less pivotal role (mean 
of 7.8%). The second-most important variable was the PWQ, and the 
contribution of TS became less. The variable importance pattern pro-
duced by the YRB model was similar to that of the whole-area model, 
despite a significant decrease in the HPD (mean of 11.0%). The MTCQ 
was the most crucial factor for the species occurrence in the YRB (mean 
of 37.8%), surpassing all other variables. The most important predictor 
for the PRB was the PWQ (mean of 35.3%), while the HPD and MTCQ 
were less important (both mean values were less than 8%). These results 
revealed that the importance of each variable in the whole-area model 
seemed balanced by the occurrences in different basins from north to 
south. The findings from basin-scale models indicated that the envi-
ronmental conditions affecting the distribution and survival of pop-
ulations in different basins were likely to greatly differ from each other. 

For each predictor, the response curves among different algorithms 
were similar in all basin-scale models and the whole-area model (Sup-
plementary Fig. S2). A comparison of the response curves produced by 
the ensemble models showed that the species occurrence exhibited a 
unimodal response to three climate factors for all basins, but the re-
sponses were different among basins for each variable (Fig. 2). This 
demonstrated that the curves of both the MTCQ and PWQ moved from 
the left to the right of the horizontal axis from the HRB to the YRB and 

the PRB, indicating that the requirements for these two variables were 
gradually enhanced for populations from north to south. The re-
quirements for the TS of different populations, however, decreased from 
northern to southern basins. This revealed the response curves of the 
climate variables produced by the whole-area model failed to reflect the 
peak occurrence probabilities of different basins despite their wider 
range of high occurrence probabilities. The optimal ranges for the 
climate variables were distinctly different from each other, although 
they slightly overlapped between connected basins (Table 2). The 
optimal range increased for the MTCQ and PWQ and decreased for the 
TS from northern to southern basins. The optimal MTCQ for the HRB 
was less than the freezing temperature (− 10.8~-1.1 ◦C), while it was 
greater than 9 ◦C for the PRB (9.6–12.1 ◦C). The optimal range of the 
MTCQ, the most important variable for species in the YRB, was above 
and below 0 ◦C for this basin (− 1.5–9.1 ◦C). As the most important 
variable for species in the PRB, the optimal PWQ (557.5–911.6 mm) was 
significantly greater than those in the other two basins. It should be 
noted that the whole-area model did not produce an optimal range 
covering those in HRB and PRB. For all basins, the occurrence proba-
bility decreased with the increase of the HPD (Fig. 2), suggesting that the 
species is inclined to occur in regions where the HPD is less than 450 
people in one square kilometer (Table 2). The requirement for human 
interference of the species occurrence in the PRB is stricter, as HPD was 
less than 75 people per km2 when its occurrence probability was above 
0.6. Generally, the requirements of the species distribution varied 
distinctly in different basins, especially for climate factors, and these 
differences could only be detected by separate basin-scale species dis-
tribution models. 

3.3. Current distribution 

The species occurrence probabilities predicted by the basin-scale 
models and the whole-area model under current conditions were 
compared (Fig. 3). Generally, the species distribution areas predicted by 
the basin-scale model were constrained to local basins, despite some 
areas with medium species occurrence probability transferred around 
basin boundaries. Fig. 4 shows that the range of the climate predictors 
clearly varied from northern to southern basins, which could have 
resulted in confined projections in local areas, considering the distinct 
responses of the species occurrence to climate factors (Fig. 2). Com-
parisons showed consistent species distributions in the YRB predicted by 
the whole-area and YRB models (Fig. 3b and d), but this was not 
observed in the basin-scale models in the HRB and PRB (Fig. 3a and c). 
The mean occurrence probability of the species occurrence data pre-
dicted by the whole-area model was less than 0.8 (Table 1, 0.75 and 0.79 
for the HRB and PRB, respectively), while it was 0.93 for the YRB, 
indicating that the whole-area model had a better performance for the 
YRB but a poor performance in predicting species occurrence for the 
HRB and PRB. As a result, compared with the local basin models, the 
whole-area model significantly underestimated the species distribution 
area by 93.4% and 80.3% for the HRB and PRR, respectively. Therefore, 
these results implied that the basin-scale model could be locally adapted 
and would be better in projecting the CGS distributions in different 
basins. 

Table 1 
Statistics of model performance, the number of models used in ensemble modeling (NME), and the predicted mean probabilities (MP) of species occurrence. MP_Basin: 
MP of local species occurrence in each basin-scale model; MP_Whole: MP of species occurrence in each basin in the whole-area model; MP_HuRB: MP of species 
occurrence in the Huai River Basin in Basin-scale and whole-area models; MP_SRB: MP of species occurrence in the Southeastern River Basin in the basin-scale and 
whole-area models.  

Models AUC TSS NME MP_Basin MP_Whole MP_HuRB MP_SRB 

M_HRB 0.952 0.812 31 0.83 0.75 0.73 0.40 
M_YRB 0.975 0.833 36 0.90 0.93 0.84 0.83 
M_PRB 0.944 0.804 29 0.88 0.79 0.62 0.82 
M_Whole 0.983 0.862 40 0.89 0.89 0.92 0.93  

P. Zhang et al.                                                                                                                                                                                                                                   
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3.4. Species range shifts 

Future species distributions were predicted for separate basins using 
basin-scale models (Supplementary Fig. S3), and species range shifts 
were compared (Fig. 5). HPD change caused similar impacts on species 
distribution for the three basins in both 2050 and 2070 (Fig. 5a and b) 
and evidently decreased the species range by over 26% (Table 3), 
especially in the HRB (range loss of 55.8% and 61.3% in 2050 and 2070, 
respectively). Compared with the current status (Fig. 3), future HPD 
changes would fragment the habitat in all the basins. The species range 
extended westward, and new habitat was gained in the YRB due to the 
impact of HPD change (Fig. 5a and b). The species range was not 
obviously altered in the HRB and YRB due to the impact of climate 
change (Fig. 5c-f), and the species ranges were slightly decreased or 
even slightly increased (due to climate change with RCP2.6 in 2050, 
Table 3), excluding an obvious range loss of 11.0% in the YRB under 
climate change with RCP8.5 in 2050. The species range loss was obvious 
in the northern PRB, while the species ranges expanded southward to 
the coastal area of the PRB in the climate-change scenarios. The overall 

range loss in the PRB, however, was more significant in 2050 than in the 
2070s in both RCP scenarios (Table 3). When overlapping the impacts 
from HPD and climate changes, the range loss was aggravated in RCP 8.5 
scenarios for all basins (Fig. 5i and j), especially in 2070 with stable 
habitat nearly disappearing in the HRB and only remaining in the west 
and the south coast, respectively, in the YRB and PRB (Fig. 5j). The 
maximum losses of species ranges in the HRB, YRB, and PRB were 
83.4%, 60.0%, 53.5%, respectively, indicating a significant negative 
impact of the combined effect of HPD and climate changes on the species 
distributions. Despite this, slight offset effects induced by climate 
change with RCP 2.6 were identified in the HRB and YRB (Table 3). 
Generally, the effects of HPD and climate changes on species ranges 
varied among watersheds and periods. HPD variation was likely the 
most influential factor that engendered negative impacts on species 
distributions in all three basins, especially in the HRB. Climate change 
was probably less prominent in decreasing the species range, excluding 
the YRB and PRB in high emission scenario in 2050. Overall, the high- 
emissions scenario would more significantly aggravate the negative 
impacts produced by HPD change under the superimposed impacts of 

Table 2 
Variable importance (%) and the optimal range of the variables (species presence probability>0.8) produced by different models. The units for the range of the TS, 
MTCQ, PWQ, and HPD are Celsius, Celsius, millimeters, and people per km2, respectively.   

Predictors M_HRB M_YRB M_PRB M_Whole 

Variable importance TS 3.3 ± 0.8 12.1 ± 1.1 10.6 ± 1.3 10.9 ± 1 
MTCQ 7.8 ± 0.9 37.8 ± 2 6.2 ± 0.9 32.6 ± 2.5 
PWQ 18.8 ± 2.1 8.0 ± 0.6 35.3 ± 4.3 15.2 ± 0.4 
HPD 40.7 ± 3 11.0 ± 0.9 7.6 ± 0.5 26.8 ± 1.9 

Optimal range TS [8.6, 11.9] [6.6, 8.4] [6.2, 7.5] [6.1, 10.1] 
MTCQ [-10.8, − 1.1] [-1.5, 9.1] [9.6, 12.1] [-3.9, 9.7] 
PWQ [134.8, 447.7] [346.5, 576.2] [557.5, 911.6] [239.7,721.2] 
HPD <441.7 <437.6 – <414.6  

Fig. 2. Response curves of predictor variables for separate and whole populations.  
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future climate changes and human pressures. 

4. Discussion 

4.1. Model comparison and consideration 

In the present study, we selected the most important variables based 
on the model that used all species occurrence records across the whole 
study area. We used the same variables in the basin-scale models to 
make the models in separate basins comparable. Only four variables 
were used to avoid overparameterization because of the relatively 
limited occurrence records in the HRB and YRB. Although we 
acknowledge that the species occurrence size in these two basins was 
tiny and that the inference ability of the SDM could be subsequently 
influenced, previous studies indicated that SDMs based on small samples 
size can also produce useful predictions (Hernandez et al., 2006; Wisz 
et al., 2008; Zhang et al., 2020b). Given the assumed niche trans-
ferability of SDMs, projections in space could be useful in identifying 

potential distributions in other geographical regions (Randin et al., 
2006; Wenger and Olden 2012). However, the differences of environ-
mental conditions among different study regions can be distinct in 
species’ range, thus, the regional model can result in a generally low 
transferability across regions. It should be noted that the aim of this 
study was not to explore the model transferability of different regional 
models but to probe local differences in species distribution responses to 
environmental changes, specifically for the CGS that have a limited 
dispersal ability and distinct population divergence among basins. We 
found distinctly different responses of species occurrence to climate 
conditions and similar responses to HPD among the three basins (Fig. 2), 
which could be an adaptation to local environments (Fig. 4). Addition-
ally, our results showed that species distribution area from the 
whole-area model did not completely cover the species occurrences in 
the HRB and YRB (Fig. 3d), while their occurrence probability was 
corrected to be higher by the local basin models, indicating that the local 
model could outperform the whole-area model. Considering the addi-
tional finding that basin-scale models could provide more detail about 

Fig. 3. Comparison of projected current occurrence probabilities for the basin-scale models and whole-area model, with a, b, c, and d representing the modeling 
results of the HRB, YRB, HRB and the whole basin, respectively. Low: occurrence probability below 0.6; Medium: occurrence probability from 0.6 to MH in Table 1 
(MH_Basin); High: occurrence probability from MH to 1. 
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species distribution, basin-scale models that incorporated local adaption 
were suggested as more reasonable model strategies. However, to 
improve or validate the ability of the model to predict species distri-
bution, independent geographically or temporally separated data should 
be collected (Bahn and McGill 2013). Considering the difficulty and high 
cost of filed investigation, the emerging environmental DNA method can 
be employed to determine the presence in the potential distribution area 
of the CGS predicted by our study and incorporate the data into future 
SDM work. 

Selecting a model-specific threshold to transform model outputs into 
binary presence/absence maps has been essential in various aspects of 
conservation applications and management (Guisan et al., 2013). 
Maximizing the sum of sensitivity and specificity (MaxSSS) is regarded 
as an efficient method for threshold selection for presence-only SDMs 
when compared with various other existing methods (Liu et al., 2013), 
and this method is also commonly used in real applications. However, it 
is stated that specificity and commission error cannot be calculated 
without true absence data when using the MaxSSS method to select the 
threshold (Braunisch and Suchant 2010). In this study, we tested the 
MaxSSS method to generate the binary map for all three separate basins 
and the whole area and found the resulted presence area of the CGS 
continuously spread over almost all of the basins. The predicted distri-
bution distinctly deviated from the real distribution of this species that is 
limited in dispersal ability and has a habitat highly impacted and 

isolated by human modification of the environment. It is indicated that 
the predicted distribution generated by MaxSSS could not characterize 
the potential distribution if information about the biotic and anthro-
pogenic factors that affect the distribution of specific species is not 
incorporated in the SDM (Liu et al., 2013). For a given species with 
populations that are geographically confined due to dispersal limitation 
or species interactions, the occupied geographic range will be smaller 
than its full potential distribution (Leathwick 1998; Svenning and Skov 
2004; Soberon and Arroyo-Pena 2017). Furthermore, limited climate 
availability is also expected to reduce the fundamental niche to a smaller 
realized niche (Soberón and Nakamura 2009). Although no direct biotic 
and human factors were considered in our model, we constrained the 
model area in the separate basin for this species with a limited dispersal 
ability and included the human population as an important predictor in 
the model. Therefore, we hypothesized that our model-estimated dis-
tribution was closer to the realized distribution, which is more consis-
tent with the actual distribution of the CGS. To achieve this, we used a 
more rigorous threshold, which was the predicted mean probability of 
the occurrence data, for the studied critically endangered species. 
Satisfactory agreements between occurrence sites and the predicted high 
occurrence probabilities were also achieved with this method (Fig. 3, 
Table 1). The predicted current species distribution was also generally 
consistent with the results from the county-scale habitat model pro-
duced by Chen et al. (2018). Further work is still needed to test and 

Fig. 4. Range comparison of the four predictors among the three basins and the whole area.  
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compare other threshold methods (e.g. kappa maximization and prev-
alence approaches) (Liu 2005) to select the optimal thresholds for 
different basins to better support model evaluation and application. 

4.2. Difference among populations in local basins 

Our research revealed a distinct response variation of species 
occurrence to climate factors from northern to southern basins. As the 
basins changed from temperate areas to subtropical monsoon regions, 
the preferred MTCQ and PWQ of the CGS were found to increase (Fig. 2) 
with increases in the air temperature and precipitation from north to 
south. As the HRB is a mountainous region with complex landforms and 
is partly controlled by a continental dry climate, its annual temperature 
differences are very large (Lu et al., 2014). This may explain why the 
preferred TS of the CGS in the HRB was higher than those in the other 
two basins. For the studied ancient animal with poor dispersal potential, 
mountains and rivers blocked its migration with the formation and 
evolution of geographic structures, which has led to a rather high level 
of population differentiation in different geographic regions (Liang 
et al., 2019). At the same time, the distributions of the species could 
have adapted to local climate conditions, as indicated by our research. 
Such local adaptation evidence was also shown in the difference in the 
contributions of climate factors to species occurrence (Table 2). The 
most important climate factor in the HRB and PRB was the PWQ, while it 
was the MTCQ in the YRB. Like most amphibians, the CGS needs to 
hibernate in cold months to reduce energy consumption and protect 
them from the frozen period. Unlike the HRB and PRB, where the 
preferred MTCQ of CGS occurrence is either below-zero temperatures or 
higher-than-zero temperatures (Fig. 2), the optimal range of the MTCQ 
in the YRB is around the freezing temperature (Table 2), revealing that 
the CGS in the YRB could be more sensitive to the variation of winter 

Fig. 5. Species distribution shifts predicted by the basin-scale models in different scenarios, in which (a) and (b) are HPD change scenarios in 2050 and 2070, 
respectively; (c) and (d) are climate change scenarios with RCP 2.6 in 2050 and 2070, respectively; (e) and (f) are climate change scenarios with RCP 8.5 in 2050 and 
2070, respectively; (g) and (h) are HPD and climate changes with RCP 2.6 in 2050 and 2070, respectively; and (i) and (j) are HPD and climate changes with RCP 8.5 
in 2050 and 2070, respectively. 

Table 3 
The relative losses of species ranges (%) for the three basins in different sce-
narios. CC: climate change; HPD + CC: climate change with HPD change.  

Scenarios Models RCP2.6 RCP8.5 

2050 2070 2050 2070 

HPD HRB − 55.8 − 61.3   
YRB − 28.1 − 33.0   
PRB − 26.9 − 27.9   

CC HRB 3.9 − 0.7 − 3.5 − 1.7 
YRB 1.9 − 1.2 − 11.0 − 3.2 
PRB − 13.3 − 2.1 − 41.8 − 2.1 

HPD + CC HRB − 53.7 − 60.9 − 56.1 − 83.4 
YRB − 26.5 − 32.5 − 30.8 − 60.0 
PRB − 34.6 − 30.3 − 53.5 − 37.2 

Differencea HRB 2.1 0.4 − 0.3 − 22.1 
YRB 1.6 0.5 − 2.7 − 27.0 
PRB − 7.7 − 2.4 − 26.6 − 9.3  

a The difference is the range loss in scenarios HPD + CC minus that in scenario 
HPD. A positive value indicates offset effects by climate change, while a negative 
value means aggravated negative impacts due to climate change. 
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temperatures required for hibernating. As the breeding month of the 
CGS is mainly in wet June and July and the quantity of precipitation is a 
dominant factor influencing the biomass and health of aquatic ecosys-
tems (Grimm et al., 2013), a suitable PWQ could afford a suitable habitat 
and enough food for CGS reproduction in the HRB and PRB. Although 
the TS was found to be relatively less important to CGS occurrence in the 
three basins, studies revealed that the seasonal variation of climatic 
conditions may influence the phenology and spatial distributions of 
salamanders (Kirk et al., 2019). 

As the life attributes of ectothermic animals are highly linked to the 
climate, climate change may cause profound impacts on salamanders 
(Bartelt et al., 2010). However, as indicated in this study, future HPD 
variations were primarily accountable for the loss of the species’ range, 
especially for the HRB, where HPD played an important role in the 
occurrence of the species. Future increasing human populations may 
advance the harvesting rate of the CGS, where it is popularly believed 
that they are nutrient-rich foods. As salamanders have low dispersal 
abilities and rigorous habitat requirements, they are susceptible to 
human-induced environmental changes (e.g., urbanization and river 
reconstruction) (Price et al., 2011). The obvious range loss of the CGS 
resulting from future HPD changes will probably be caused by the 
booming expansion of urban areas in China in the future. As the CGS 
prefers to live in habitats with clean and fast-flowing waters(Chen et al., 
2018), urbanization can destroy suitable habitats by changing the land 
cover, altering catchment hydrology, and contaminating river water 
(Price et al., 2011). Additionally, our study revealed distinct habitat 
fragmentation caused by HPD change, which would decrease the genetic 
diversity of populations by obstructing movement among species ranges 
(Marsh et al., 2005) and ultimately increase the risk of species extinction 
(Noël et al., 2006). 

4.3. Insights for conservation and management 

The endangered CGS has attracted considerable conservation atten-
tion, while the baseline data on its distribution status is often limited for 
identifying conservation activities and management policies (Fellowes 
et al., 2009). The spatiotemporal species distribution produced by our 
study could provide helpful guidance to surveys of the species’ presence 
and could detect key habitats and populations throughout its ranges. 
Setting up nature reserves has been acknowledged as an effective 
strategy for protecting natural populations of the CGS (Liang et al., 
2013). However, effective management to prohibit human access to 
habitats has been lacking in some of the protected areas (Pan et al., 
2015). Our research elucidated that future HPD change would result in a 
significant range loss of the CGS, which is basically following the 
accepted view that their population decline in the wild is primarily 
attributed to human-induced habitat destruction and overexploitation. 
Therefore, tighter measures that prevent human interference should be 
addressed, especially for the existing nature reserves of the CGS. To do 
this, public education campaigns should be enhanced to provide better 
information about the survival status of the CGS and the importance of 
conserving their habitat. The government should implement severer 
penalties and regulations to prohibit hunting wild CGS. We recognize 
that climate change would induce relatively fewer negative impacts on 
the CGS distribution; however, it is likely to evidently aggravate the 
adverse impacts from human pressure in the future.\, as indicated in our 
study. Therefore, climate factors that heavily influence the habitat and 
survival of the CGS should not be neglected when formulating conser-
vation measures. 

We revealed local differences in climate variable importance and 
range shift responses to HPD and climate changes among the three ba-
sins using basin-scale models. Therefore, we suggest that local adaptive 
management strategies should be employed for populations in different 
regions in the future. For the HRB, it is especially important to eliminate 
the impact of human activities on the habitat of the CGS, as the variation 
of the used human-related factor would cause distinct range loss. For 

this relatively dry basin, we reported that precipitation in the wet season 
is a dominant climate factor since it may affect its breeding activities. 
Water replenishment to the key habitat streams and rivers in the 
reproduction season could be an effective measure. If no urgent con-
servation measures are implemented, the suitable habitats would be 
devastated by HPD and climate changes (Fig. 5j). For the YRB, we 
advocate strengthening the conservation of existing nature reserves, as 
most of them are in this basin, and new reserves could be established in 
the west of the range since the habitat there is more stable; thus, new 
habitats would be colonized in this region with the changes of HPD and 
the climate (Fig. 5). Mitigating the environmental temperature in the 
winter is needed for the reserves, as the temperature is crucial in 
influencing the hibernation of the CGS. For the PRB, compared to the 
impact of human pressure, climate change would seriously reduce the 
species range in the northern part of the basin, although new habitat 
could be gained in the south (Fig. 5c-f). This would force the habitat and 
populations in the PRB to be more isolated from those on the north side. 
As precipitation in the wet season was found to be notably more 
important for species occurrence compared to other climate factors and 
the human factor, similar measures in the HRB should be particularly 
enforced to support the successful breeding of the species. As the species 
ranges of the three basins would distinctly be detached from each other 
in the future (Fig. 5g-j), specific mitigation strategies at the population 
level should be further addressed in future studies, and our findings 
concerning the local adaptation differences of species ranges provide 
beneficial information. 

It is worth mentioning that the release of farmed salamanders has 
been increasingly approved as a conservation measure for the CGS in 
recent years. Although it could help restore its populations, the intro-
duction of non-native individuals might induce severe genetic homog-
enization in local populations (Liang et al., 2019). Therefore, we suggest 
that environmental tolerance and genetic lineage should be tested 
before releasing farmed individuals into the wild. In any case, our study 
highlights the importance of local adaptation in generating more robust 
management and conservation plans for this critically endangered spe-
cies of special interest. 
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Noël, S., Ouellet, M., Galois, P., Lapointe, F.-J., 2006. Impact of urban fragmentation on 
the genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 
599–606. 

Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E., Butchart, S.H., Kovacs, K.M., 
Scheffers, B.R., Hole, D.G., Martin, T.G., Akçakaya, H.R., 2015. Assessing species 
vulnerability to climate change. Nat. Clim. Change 5, 215–224. 

Pan, Y., Wei, G., Cunningham, A.A., Li, S., Chen, S., Milner-Gulland, E.J., Turvey, S.T., 
2015. Using local ecological knowledge to assess the status of the Critically 
Endangered Chinese giant salamander Andrias davidianus in Guizhou Province, 
China. Oryx 50, 257–264. 

Pearman, P.B., D’Amen, M., Graham, C.H., Thuiller, W., Zimmermann, N.E., 2010. 
Within-taxon niche structure: niche conservatism, divergence and predicted effects 
of climate change. Ecography 33, 990–1003. 

Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., 
Chirici, G., 2019. Species distribution modelling to support forest management. A 
literature review. Ecol. Model. 411, 108817. 
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