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• The species range was predicted using
ensemble species distribution model-
ing.

• Both climate change and human popu-
lation change would reduce the species
range.

• Human pressure is responsible for 71.4%
of the range loss and fragment the
range.

• Over half of the reservesmight lose suit-
able habitat under the combined im-
pacts.

• Specific mitigation strategies for differ-
ent reserves should be developed.
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The Chinese giant salamander, Andrias davidianus, theworld's largest amphibian, is critically endangered and has
an extremely unique evolutionary history. Therefore, this species represents a global conservation priority and
will be impacted by future climate and human pressures. Understanding the range and response to environmen-
tal change of this species is a priority for the identification of targeted conservation activities.We projected future
range shifts of the Chinese giant salamander under the independent and combined impacts of climate change and
human population density (HPD) variations by using ensemble species distribution models. We further evalu-
ated the sustainability of existing nature reserves and identified priority areas for the mitigation or prevention
of such pressures. Both climate change and increasing HPD tended to reduce the species range, with the latter
leading to greater range losses and fragmentation of the range. Notably, 65.6%, 18.0% and 18.4% of the range
losswere attributed solely to HPD change, solely to climate change and to their overlapping impacts, respectively.
Overall, the average total and net losses of the species rangewere 52.5% and 23.4%, respectively, and HPD and cli-
mate changeswere responsible for 71.4% and 28.6% of the net losses, respectively.We investigated the stability of
the remaining species range and found that half of the nature reserves are likely vulnerable, with 57.1% and 66.7%
of them likely to lose their conservation value in 2050 and 2070, respectively. To effectively protect this salaman-
der, conservation policies should address both pressures simultaneously, especially considering the negative
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impact of humanpressures in both contemporary periods and the near future. The species range shifts over space
and time projected by this research could help guide long-term surveys and the sustainable conservation of wild
habitats and populations of this ancient and endangered amphibian.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The species ranges and abundance of wildlife have been declining
for centuries in many parts of the world because of habitat fragmenta-
tion, degradation and loss due to anthropogenic threats such as land
use change (e.g., urbanization and intensive forestry), invasive species,
aquatic pollution, and emerging diseases, with amphibians experienc-
ing greater impacts than most other groups (Wake and Vredenburg,
2008; Yan et al., 2018). Climate change represents yet another threat
towild populations, and the current and future effects of climate change
are likely to exacerbate existing stressors (Hof et al., 2011). Amphibians
are currently considered the most threatened class of vertebrates
worldwide, with approximately one-third of all species imperiled
(Stuart et al., 2004). Amphibians, specifically salamanders, are particu-
larly vulnerable to the effects of climate change and pressures from
human activities due to their restrictive physiological requirements
and low vagility (Barrett and Guyer, 2008). Unlike some species that
have dispersal capabilities allowing them to track shifting environmen-
tal envelopes, amphibians will experience range contractions when
parts of their range no longer exhibit climatic patterns suitable for the
maintenance of stable populations (Araújo et al., 2006). In addition,
with respect to ongoing habitat destruction, the threats of climate
change and other possible human pressures likely are not currently ap-
parent; however, they represent the greatest threats to the persistence
of populations in the future (Corn, 2005). Therefore, it is necessary to
understand how the species ranges of vulnerable amphibians will re-
spond to future perturbations, including both climate change and
human pressures, to ensure long-term conservation.

Correlative species distribution models (SDMs) that have practical
advantages in predicting the impacts of changing environments
(Fraser et al., 2017; Gallego-Zamorano et al., 2020) have been widely
used for the conservation management of land, forest, river and marine
ecosystems due to their simplicity and flexibility (Growns et al., 2013;
Marshall et al., 2014; Booth, 2018; Khoury et al., 2020). For example,
SDMs have been used to examine the effects of climate change on the
future spatial distribution of protected areas, identify areas of high con-
servation value for endangered species (Wilson et al., 2011), guide the
search for poorly known species (Fois et al., 2018), model the distribu-
tions of threatened species in protected areas (Pěknicová and
Berchová-Bímová, 2016), predict the invasion risks of alien species in
local areas (Bae et al., 2018; Dong et al., 2020) and support
multiobjective ecological restoration decisions for endangered species
(Fraser et al., 2017). Although the use of SDMs for nonequilibrium spe-
cies distributions under contemporary climate conditions is sometimes
considered precarious (Fitzpatrick and Hargrove, 2009), attempts have
been made to reduce modeling uncertainties through novel techniques
(Kearney et al., 2010). These techniques include ensemblemethods that
average across many different modeling approaches (Hao et al., 2019)
and data integration methods based on multiple sources (Isaac et al.,
2019). To date, SDMs have been widely explored to project the current
and future distributions of salamanders in the context of climate change
for local conservation efforts (Werner et al., 2013; Lyons and Kozak,
2019). However, research on the combined impacts of future climate
change and human pressures, especially in areas where human pres-
sures affect increasingly large regions and where market forces drive
the overexploitation of salamanders, is limited.

The Chinese giant salamander, Andrias davidianus (CGS), which is
the world's largest amphibian and is endemic to China, is categorized
as critically endangered on the IUCN Red List and is a priority for inter-
national amphibian conservation because of its extremely unique evo-
lutionary history (Isaac et al., 2012). Once thought to be widespread
throughoutmost of China, this species has beendeclining in thewild be-
cause of human-induced habitat destruction and harvesting for luxury
food and is currently critically endangered at the national level (Yan
et al., 2018). Effective conservationmeasures, such as the establishment
of nature reserves, have been implemented to protect wild populations.
However, conservation interventions are hindered by limited range-
wide data because this species is difficult to detect, and only site-level
data are available for cryptic species that occur across large geographic
areas (Chen et al., 2018). Since large-scale surveys remain impossible
for this species, SDMs provide promising tools with which to explore
the range of the giant salamander, which is considered a priority activity
for spatial conservation planning (Isaac et al., 2012). A recent study re-
vealed that future climate changewill severely reduce habitat suitability
for the CGS (Zhang et al., 2020); however, human pressures that can
considerably influence species range shifts (Turvey et al., 2018) were
not considered in themodelingwork. In the present study, we explored
and quantified the combined impacts of future climate change and
human pressure on the CGS distribution. The spatial range shifts in re-
sponse to the independent and superimposed impacts of these factors
weremapped and analyzed, and the near-future sustainability of nature
reserves was evaluated. This research can provide insight into the con-
servation management of the world's largest salamander in both the
current period and future periods.

2. Methods

2.1. Species occurrence and conservation status

With a length of twometers andweight of 60 kg, the CGS is the larg-
est recognized extant species of amphibian; it is one of three living
cryptobranchid species, which diverged from other amphibians during
themid-Jurassic period. Historically, the species was widely distributed
throughout most parts of China; however, it currently mainly lives in
central and southern China in three major basin systems: the Yellow,
Yangtze, and Pearl River basins (Fig. 1). The sharp decline in population
size over the past two decades was largely due to the loss of primary
habitat and consumption by humans (Chen et al., 2018; Yan et al.,
2018). The species was awarded ‘Class II’ protection under the Chinese
Conservation Law in 1988, and it is currently listed as critically endan-
gered by the IUCN and in Appendix I of CITES. As a conservation mea-
sure, several municipal, provincial and national nature reserves have
been established, and artificial breeding has been encouraged by the
government as a possible conservation measure.

In this study, occurrence data were compiled from three resources:
(1) the Global Biodiversity Information Facility (GBIF; http://www.
data.gbif.org/) data set; (2) an open-source geodatabase that lists the
nature reserves in China (https://www.osgeo.cn/data/); and (3) litera-
ture that surveyed and reviewed CGS distribution sites (Wen, 2015;
Turvey et al., 2018). The time span of these data covers the second
half of the 20th century, when the CGS was widely distributed in
China, to the early 21st century. After removing duplicate and appar-
ently erroneous presence records (e.g., records outside of China and ter-
restrial records far from water), 259 records remained, including
records in 23 provincial and national reserves (Supporting Information
Table S1). To diminish the effect of spatial autocorrelation originating

http://www.data.gbif.org/
http://www.data.gbif.org/
https://www.osgeo.cn/data/


Fig. 1. Locations of provincial and national conservation reserves, occurrence data used for species distribution modeling and the projected current habitat distribution of the CGS.
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from the spatial clustering of presence records (i.e., more than one pres-
ence record in one environmental grid cell with a 30 arc-second spatial
resolution, ca. 1.0 km2 at the equator), a spatial thinning or rarefying ap-
proach similar to that used by Boria et al. (2014) was applied to our
presence dataset, selecting at most one record in each environmental
grid cell (Feng et al., 2019). Correspondingly, 253 presence records
were finally retained. Since presence-absence algorithms are known
to perform better than presence-only algorithms (Elith et al., 2006)
and true absence records for the CGS at a national scale are impossible
to confidently identify, we instead generated 253 pseudo-absence re-
cords spanning the whole country and its adjacent areas using a ran-
domization method conditioned by excluding pixels where presences
are known (Barbet-Massin et al., 2012). Afterwards, we combined
these pseudo-absence records with those retained presence records,
and then shuffled the whole dataset to obtain the ultima species pres-
ence and pseudo-absence dataset for posterior analysis (Senay et al.,
2013).

2.2. Predictor variable selection

The choice of predictor variables can have a strong effect on the
quantification of the realized niche and therefore on SDM transferability
in time and space (Peterson et al., 2007). We initially selected nineteen
climate variables and eleven non-climate variables considered ecologi-
cally meaningful for the spatial distribution of this species as candidate
predictors (Table 1). The climate variables are commonly used biocli-
matic variables (BIO1-BIO19) in the field of ecological niche modeling
(Hijmans et al., 2005) from the WorldClim database (http://www.
world clim.org), including eleven temperature-related variables and
eight precipitation-related variables. The eleven nonclimate variables
were land environmental and human-related factors, including land el-
evation (LAE), waterbody area (WTA), flood hazard frequency (FHF),
cropland area (CLA), development pressure index (DPI), humanpopula-
tion density (HPD), human population count (HPC), human influence
index (HII), human impervious area percentage (HIP), river fragmenta-
tion index (RFI), and dam density (DD). Detailed information about
these data can be accessed through the sources provided in Table 1.
We used two steps to select the predictor variables. First, the variance
inflation factor (VIF) for each candidate predictor variable was calcu-
lated, and the predictor variables with VIF values greater than 10 were
removed to avoid overfitting and eliminate the effects of collinearity
(DeMarco and Júnior, 2018). Based on this criterion,fifteen climate var-
iables and two non-climate variables, LAE andHPC, were excluded,with
temperature seasonality (BIO4, TS), mean temperature in the coldest

http://www.world
http://www.world
http://clim.org


Table 1
Description of tested and selected variables with the selection and exclusion criteria. Variables in bold font were selected for projection and prediction in this study.

Type Test
variables

Description Selection/Exclusion criteria Source

Climate

BIO1 Annual Mean Temperature Collinearity https://www.worldclim.org/data/worldclim21.html

BIO2
Mean Diurnal Range (Mean of Monthly (Max Temp - Min
Temp))

Collinearity https://www.worldclim.org/data/worldclim21.html

BIO3 Isothermality (BIO2/BIO7) (* 100) Collinearity https://www.worldclim.org/data/worldclim21.html

BIO4 Temperature Seasonality (Standard Deviation *100)
Noncollinear and
important

https://www.worldclim.org/data/worldclim21.
html

BIO5 Max Temperature of Warmest Month Collinearity https://www.worldclim.org/data/worldclim21.html
BIO6 Min Temperature of Coldest Month Collinearity https://www.worldclim.org/data/worldclim21.html
BIO7 Temperature Annual Range (BIO5-BIO6) Collinearity https://www.worldclim.org/data/worldclim21.html
BIO8 Mean Temperature of Wettest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html
BIO9 Mean Temperature of Driest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html
BIO10 Mean Temperature of Warmest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html

BIO11 Mean Temperature of Coldest Quarter
Noncollinear and
important

https://www.worldclim.org/data/worldclim21.
html

BIO12 Annual Precipitation Collinearity https://www.worldclim.org/data/worldclim21.html
BIO13 Precipitation of Wettest Month Collinearity https://www.worldclim.org/data/worldclim21.html
BIO14 Precipitation of Driest Month Collinearity https://www.worldclim.org/data/worldclim21.html

BIO15 Precipitation Seasonality (Coefficient of Variation)
Noncollinear and
important

https://www.worldclim.org/data/worldclim21.
html

BIO16 Precipitation of Wettest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html
BIO17 Precipitation of Driest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html

BIO18 Precipitation of Warmest Quarter
Noncollinear and
important

https://www.worldclim.org/data/worldclim21.
html

BIO19 Precipitation of Coldest Quarter Collinearity https://www.worldclim.org/data/worldclim21.html

Nonclimate

LAE Land Elevation, extracted from STRM DEM Collinearity http://srtm.csi.cgiar.org/download

WTA Waterbody Area
Noncollinear and
important

http://sedac.ciesin.columbia.edu/data/sets/browse

FHF Flood Hazard Frequency Unimportant http://sedac.ciesin.columbia.edu/data/sets/browse
CLA Cropland Area Unimportant http://sedac.ciesin.columbia.edu/data/sets/browse
DPI Development Pressure Index Unimportant http://sedac.ciesin.columbia.edu/data/sets/browse

HPD Human Population Density
Noncollinear and
important

http://sedac.ciesin.columbia.edu/data/sets/browse

HPC Human Population Count Collinearity http://sedac.ciesin.columbia.edu/data/sets/browse
HII Human Influence Index Unimportant http://sedac.ciesin.columbia.edu/data/sets/browse

HIP Human Impervious Area Percentage
Noncollinear and
important

http://sedac.ciesin.columbia.edu/data/sets/browse

DD Dam Density Unreasonable http://www.riverthreat.net/data.html
RFI River Fragmentation Index Unreasonable http://www.riverthreat.net/data.html
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quarter (BIO11, MTCQ), precipitation seasonality (BIO15, PS), pre-
cipitation in the warmest quarter (BIO18, PWQ) and other non-
climate variables retained for further selection. Then, we performed
an initial round of modeling using the remaining variables and
checked the contribution and the shape of the response curve of
each variable. Based on variable importance and reasonability
criteria, the variables were further selected. The variables with con-
tribution less than 0.01 were removed (i.e., FHF, CLA, DPI and HII).
However, two variables with high contribution values, RFI and DD,
were left out because their response curves showed that they were
unreasonably positively correlated with occurrence probability.
Consequently, seven variables, namely, TS, MTCQ, PS, PWQ, WTA,
HPD and HIP, were finally selected and used for model projection
and prediction in the present study.

2.3. Ensemble species distribution modeling and prediction

Ensemble models are often considered superior to single algorithms
because their combined framework can reduce theuncertainties of indi-
vidual algorithms and provide more robust and reliable projections
(Grenouillet et al., 2011). We opted to use four different algorithms
that have been frequently applied in the field of ecological nichemodel-
ing to establish the basalmodels required by the ensemblemodel. These
algorithms were a generalized linear model (GLM), generalized
boosting model (GBM), random forest (RF) model and multiple adap-
tive regression splines (MARS) model, and all these algorithms were
fit using the default settings of the biomod2 package (Thuiller et al.,
2009) in the open-source statistical software R 3.6.1. A random 70% of
the total presence and absence records were selected as the training
set to calibrate the algorithms; the remaining 30% were withheld for
evaluating algorithm performance. This process was replicated 10
times to account for individual algorithm variabilities, avoid bias from
the dataset split, and add rigor to the results. Model performance was
assessed based on two metrics: the area under the receiver operating
characteristic curve (AUC) and the true skill statistic (TSS). Basalmodels
with TSS values over 0.75 andAUC values over 0.90were selected to de-
velop committee-averaged ensemblemodels and ensure that the devel-
oped ensemble model had the optimal predictive ability for occurrence
probability (Guisan et al., 2013). The ensemble models were used to
predict habitat suitability for the CGS under current climate conditions
and the independent and combined impacts of future climate and
HPD changes.

We generated projections for the current climate (1950–2000) and
future climates for 2050 (average for 2041–2060) and 2070 (average
for 2061–2080), the data for which were obtained from WorldClim
1.4 (http://www.world clim.org). The projections were predicted
under three representative concentration pathways (RCP 2.6, 4.5 and
8.5) from three widely used global circulation models (GCMs) (BCC-
CSM1-1, CCSM4, and MIROCESM-CHEM) in Asia. As no datasets are
available for future HIP and WTA, we kept these two variables static in
the future predictions. Future HPD was obtained from global down-
scaled population projection grids at a resolution of 1 km for 2050 and
2070 (Jones and O'Neill, 2016). This dataset is a downscaled version of
the Global One-Eighth Degree Population Projection Grids that is both
quantitatively and qualitatively consistent with shared socioeconomic
pathways (SSPs). SSPs were developed to support future climate and
global change research and the IPCC Sixth Assessment Report (AR6)
(Gao, 2019).
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2.4. Quantifying the impacts on species range shifts

The results of species distribution modeling represent the probabil-
ities of species occurrence or habitat suitability, and they include some
noise and background information. However, in conservation and envi-
ronmental management practices, information presented based on spe-
cies presence/absence may be more practical than that presented as a
probability or suitability. Therefore, a threshold is needed to transform
probability or suitability data to presence/absence data (Liu et al.,
2005). This study takes the mean value of the predicted probabilities
of species presence, which is regarded as biologically meaningful
(Cramer, 2003), as the threshold to transform the projected habitat suit-
abilitymaps to binarymaps, with 1 and 0 representing species presence
and absence areas, respectively. Species range shifts in response to cli-
mate change and HPD change were evaluated by calculating the differ-
ence between the species ranges projected for future and current
statuses, with the resulting values of 1, 0, and −1 representing species
range expansion, retention and loss, respectively. The areas of total
range loss (TRL) and total range expansionwere calculated by summing
the areas of the grids with values of −1 and 1, respectively. Therefore,
the TRL change and net range loss (NRL) change relative to the species
range area in the current period were calculated by

PTRL; f ¼
ΔATRL; f

Ac
� 100% ð1Þ

PNRL; f ¼
ΔATRL; f−ΔAE; f

Ac
� 100% ð2Þ

where ΔATRL, f and ΔAE, f are the areas of TRL and range expansion, re-
spectively; PTRL, f and PNRL, f are the percentages of TRL and NRL, respec-
tively; Ac is the range area in the current period; and the subscript f can
be p, c, or pc, which represent future scenarios impacted by only HPD
change, only climate change or their combined changes, respectively.

The contributions of the independent and overlapping impacts of
HPD and climate change to range loss were calculated by

Pcon;p ¼ ΔATRL;p−ΔATRL;o

ΔATRL;pc
¼ PTRL;p−PTRL;o

PTRL;pc
ð3Þ

Pcon;c ¼ ΔATRL;c−ΔATRL;o

ΔATRL;pc
¼ PTRL;c−PTRL;o

PTRL;pc
ð4Þ

Pcon;o ¼ ΔATRL;o

ΔATRL;pc
¼ PTRL;o

PTRL;pc
¼ PTRL;p þ PTRL;c−PTRL;pc

PTRL;pc
ð5Þ

where Pcon, p, Pcon, c, and Pcon, pc represent the range loss change thatwas
driven by only HPD change, only climate change and overlapping im-
pacts, respectively, and ΔATRL, o and PTRL, o represent the overlapping
TRL and the percentage of the loss that was negatively impacted by
both climate change and HPD in the scenario considering the combined
impacts, respectively.

The separate overall impacts of HPD change and climate change
were evaluated by

Pimp;p ¼ ΔATRL;p−ΔAE;p

ΔATRL;pc
−ΔAE;p ¼ PNRL;p

PNRL;pc
ð6Þ

Pimp;c ¼
ΔATRL;c−ΔAE;c

ΔATRL;pc
−ΔAE;c ¼ PNRL;c

PNRL;pc
ð7Þ

where Pimp, p and Pimp, c represent the negative impacts of HPD change
and climate change on species range loss, respectively.
The stability of each grid area under the impact of climate change
with and without HPD change was evaluated by

Stability ¼ Loss;Nloss; f NN � 50%Gain;Nexpasion; f NN � 50%

Stable;Nretain; f ≥N−1 Vulnerable; other else

ð8Þ

where N is the total number of climate change scenarios (N = 9) and
Nloss, Nexpansion, and Nretain represent the numbers of climate change sce-
narios under which the species range is lost, expands, and is retained in
all climate change scenarios, respectively. The grid areas in which no
range loss, retention or expansion would occur in over half of the sce-
narios were regarded as vulnerable to future environmental change.
Specifically, the ability of habitats in the provincial and national nature
reserves to sustain the presence of this species under the impacts of cli-
mate change and human pressures was explored based on the evalua-
tion of the stability of the species range.

Landscape indices were used to evaluate the impacts of climate
change and HPD change on species distribution patterns. The dynamics
of habitat patterns within a landscape are normally defined as habitat
fragmentation, a processwhereby a contiguous patch of habitat is trans-
formed into a number of smaller and disjunctive patches (Cumming and
Vervier, 2002). We used patch density and edge density to assess range
distribution changes for the CGS. These variables are recognized as ef-
fect indices with which to evaluate habitat fragmentation (Wang
et al., 2014) and are given by (McGarigal et al., 2012)

PD ¼ n
A
� 1000

ED ¼

X

k¼1

n
ek

A
� 1000

where PD is patch density (/km2), ED is edge density (m/km2), A is the
total range area (m2), n is the number of species range patches, and ek
is the total length (m) of edges for the kth patch. As patch density and
edge density measure the degrees of range aggregation or conjunction,
higher values of both indices represent greater fragmentation of the
species range. All of the above calculations were performed in the
open-source statistical software R 3.6.1.

3. Results

3.1. Model performance

The predictive ability of the four modeling algorithms was consis-
tently excellent, with AUC values ranging from 0.89 to 0.98 and TSS
values ranging from 0.72 to 0.89 for all the basal models (Fig. 2). RF
and GBM were the two best predictive algorithms, with median AUCs
of 0.952 and 0.948 and TSSs of 0.815 and 0.827, respectively. Among
the 40 basal models, 35 models with high AUCs and TSSs were used to
develop the ensemble SDMs. The ensemble model surpassed all of the
individual algorithms, with the highest AUC and TSS values of 0.98
and 0.86, respectively (Fig. 2).

3.2. Predominant predictors

The model results indicated that MTCQ, HPD, PWQ, and TS were the
most predominant factors affecting the range of the CGS, with impor-
tance values of 0.288 ± 0.045, 0.249 ± 0.053, 0.186 ± 0.031, and
0.125 ± 0.067, respectively, whereas PS (0.041 ± 0.008), HIP
(0.026± 0.005) andWTA (0.018± 0.004) played less pivotal roles. No-
tably, the contribution of HPD to the CGS distribution was nearly equiv-
alent to or greater than the contributions of the other climate variables.
The shapes of the response curves of different algorithms for the four
most important variables were similar to each other (Fig. 3). More



Fig. 2. Model reliability comparison for four machine learning and ensemble modeling
methods using AUC and TSS values.
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specifically, the occurrence probability of the CGS showed a unimodal
response to TS, MTCQ and PWQ, with optimal ranges for the presence
of the CGS of approximately 6–10 °C, −4–9 °C and 400–950 mm, re-
spectively. However, occurrence probability showed a decreasing
trend with increasing HPD, suggesting that the species distribution is
mainly restricted to areas with HPD lower than approximately 400 peo-
ple per km2.
Fig. 3. Response curves for
3.3. Species distribution shifts

Themean value of suitability based on all the occurrence data calcu-
lated from the ensemble model was 0.89, and it was used as the thresh-
old for species presence or absence. The species was shown to be
distributed mainly in the Yangtze River Basin (Fig. 1), and the total
area of the species range was 1.11 × 106 km2. The spatial distribution
shifts are shown in Fig. 4a-f. In the HPD change scenarios (Fig. 4a, b),
the species range obviously expanded toward the north, and a large
part of the habitat moved to a previously less suitable area in both
2050 and 2070. The lost distribution areas were widely and discontinu-
ously distributed throughout the area affected by future HPD change. In
contrast, both the loss and gain of distribution areas were mainly ob-
served along the internal and external boundaries of the current range
under the future climate change scenarios (Fig. 4c, d). Most of the hab-
itat loss occurred in the northern and eastern regions, and habitat ex-
pansion mainly occurred in the southern region. Under the combined
impacts of climate and HPD changes, the spatial distribution of the
losses and gains was similar to that in the solely HPD change scenario,
but both the lost and expanded ranges increased (Fig. 4e, f).

Habitat fragmentation analysis showed that the patch density and
edge density of the species range obviously increased by 35.7% and
17.7% on average, respectively, in both 2050 and 2070 under the impact
of HPD change (Fig. 5). Climate change fragmented the species range,
with the patch density and edge density slightly increasing by 8.8%
and 3.4%, respectively, on average. Under the combined impacts of
HPD and climate changes, species range fragmentation still noticeably
increased compared with that under current conditions, despite the
edge density being reduced compared with that in the HPD change sce-
nario. These results indicate that although both climate change andHPD
change would have negative impacts on the species range of the CGS,
HPD changewould likely be the dominant factor driving future distribu-
tion shifts and range loss.
the major predictors.
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Fig. 4. Shifts in the species range of the CGS under the independent and combined impacts of climate change andHPD change. The scenarios are (a)HPD change in 2050; (b)HPD change in
2070; (c) climate change in 2050; (d) climate change in 2070; (e) HPD and climate change in 2050; and (f) HPD and climate change in 2070.
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3.4. Species range loss

Although some gains in the species range were observed under all
scenarios, overall reductions were identified throughout the area.
Table 2 shows the average percentages of TRL and NRL, combined im-
pacts of climate and HPD changes in 2050 and 2070 (the range losses
under all scenarios are shown in Supplementary Table S2). The TRL
and NRL exhibit a slight increase in 2070 compared with 2050 under
the impact of HPD change. Compared to current conditions, HPD change
would lead to a significant reduction in the species range,with themean
percentage of TRL being 44.2% in the two periods. Although the species
range would increase in some regions (Fig. 4a, b), the negative impacts
of HPD change would dominate, ultimately with an average NRL of
16.7% in 2050 and 2070.
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Fig. 5. Comparison of habitat fragmentation indices between different scenarios (PD:
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Generally, both TRL and NRL in the HPD change scenarios were
higher than those in the climate change scenarios (18.1% and 6.7% on
average for TRL and NRL, respectively), indicating that HPD change
would likely have a more negative impact on the species range. Aggra-
vated loss of the species range was observed under the combined im-
pacts of HPD and climate changes (52.5% on average for TRL).
However, 9.7% of the TRL would result from the overlapping effect of
HPD and climate changes. Under the combined impacts of HPD and cli-
mate changes, 65.6%, 16.0% and 18.4% of the TRL resulted from solely
HPD change, solely climate change and their overlapping impacts (cal-
culated by Eqs. (3)–(5)), respectively. Overall, the NRL decreased by
23.4% with HPD change, and climate change explained 71.4% and
28.6% of this loss (calculated by Eqs. (6)–(7)).

3.5. Stability of nature reserves

The stability maps of the species range under the impacts of climate
change with and without HPD changes in 2050 and 2070 are shown in
Fig. 6. Climate change results in the loss of habitat along the boundaries,
with the discontinuous mixing of vulnerable and newly colonized
Table 2
Changes in the total range loss (TRL) and net range loss (NRL) (%) for the CGS under the
independent and combined impacts of human population density (HPD) change and cli-
mate change (CC).

Loss type Scenarios 2050 2070 Mean

Total range loss

HPD 42.3 46.0 44.2
CC 17.9 18.3 18.1
Combined 51.0 54.1 52.5
Overlap 9.2 10.2 9.7

Net range loss
HPD 15.2 18.2 16.7
CC 7.1 6.2 6.7
Combined 22.3 24.4 23.4



Fig. 6. Species range stability under future scenarios: (a) climate change in 2050; (b) climate change and HPD change in 2050; (c) climate change in 2070; and (d) climate change andHPD
change in 2070.
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habitats. After integrating the impacts of HPD changes, the extensive
stable species range was reduced and fragmented. Based on these
maps, the stability of each national and provincial nature reserve site
under the independent or combined impacts of HPD and climate
changes was evaluated. Habitat stability changes over time and under
different scenarios are clearly shown in Table 3. Importantly, two re-
serves are not recognized as suitable habitat under both current and fu-
ture environmental conditions. A total of 57.1% of the existing reserves
suitable for CGS protection would lose suitable habitat in both 2050
and 2070 in response to future HPD changes. Climate change would
cause 23.8% and 28.6% of the reserves to be vulnerable in 2050 and
2070, respectively, and 4.3% and 9.5% of the reserves would lose their
habitat. Under the combined impacts of climate and HPD changes,
14.3% of the reserves would become vulnerable and 57.1% and 66.7%
of the reserves would likely lose their conservation value in 2050 and
2070, respectively. However, four of the existing reserveswould remain
stable under the impact of future climate change and HPD change (i.e.
Zhangjiajie National Nature Reserve, Xishui National Nature Reserve,
Fanjingshan National Nature Reserve, and Luonan Provincial Nature Re-
serve of CGS).
4. Discussion

4.1. Factors influencing species range shifts

Climate change impacts are likely to be profound for amphibians be-
cause they are ectothermic with life cycle and life history attributes that
are tightly linked to climate (Bartelt et al., 2010). As ectotherms, am-
phibians are highly dependent on ambient thermal environments,
which influence the physiology, locomotor performance, behavior, hab-
itat use and range-wide distribution of species via their effects on body
temperature. This study suggests that the temperature in the coldest
quarter and precipitation in thewarmest quarter primarily form the cli-
mate niche of the CGS. Similar tomost amphibians, this species needs to
hibernate, which provides protection from cold environments and
avoids problems related to food unavailability. Although warming tem-
peratures in winters would provoke earlier emergence from hiberna-
tion than usual, increasing temperatures should result in increased
energetic expenditure, decreased growth rates, and decreased resource
allocation during overwintering periods (Caruso et al., 2014). These
pressures fromwarmingwintersmay drive the species to move toward



Table 3
Stability changes of the CGS reserves under the climate change and HPD change scenarios. S: stable; V: vulnerable; L: lost habitat. The two reserves with bold font do not contain CGS
habitatn in current and future conditions, and the four reserves with gray backgrounds would remain stable under future scenarios. Detailed information on the reserves can be found
in Supplementary Table S1.
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cool regions. This species feeds mainly on fish and crustaceans, and its
reproductive season is in June and July, when temperatures are warm.
As the quantity and temporal patterns of precipitation play an impor-
tant role in the productivity and species richness of river ecosystems
by shaping hydroecological processes (Grimm et al., 2013), sufficient
precipitation could provide enough food and a suitable water environ-
ment for successful reproduction. Recent research has shown that vari-
ation in seasonal climatic conditions also strongly influences the life
history, phenology, and geographic location of salamanders (Kirk
et al., 2019).

However, our research indicates that future HPD changes will be
mainly responsible for the range loss of the CGS. Salamanders possess
a variety of characteristics (e.g., cutaneous respiration and low vagility)
that make them sensitive to environmental modifications, such as
stream alterations and urbanization (Price et al., 2011). The range loss
and fragmentation due to HPD changes in both 2050 and 2070 could re-
sult from future urban expansion with the economic development of a
large number of small and medium-sized cities. As urbanization pro-
gresses, land-cover patterns change, and the habitats of species can be
destroyed and shrink, especially their wild habitats. The urbanization
of catchments not only modifies stream hydrology but also contami-
nateswater (Price et al., 2011),which could expose the species to anun-
suitable environment, as it prefers living in fast-flowing and cleanwater
(Chen et al., 2018). In addition, growing human populations are likely to
have increased consumption demands for this species, which is widely
believed to provide precious nutrients. A deeper impact of future HPD
change revealed in this study is habitat fragmentation, which could dis-
rupt movement between formerly contiguous habitats (Marsh et al.,
2005), decrease genetic diversity among populations and ultimately
contribute to long-term extinction (Noël et al., 2006). The finding that
human pressures are primarily responsible for the range losses of the
CGS is consistent with the current belief that the decline in the wild
population is mostly attributed to overexploitation.

Our study reveals that other two non-climate variables, WTA and
HIP, are not most important (variable importance is less than 0.03) for
CGS distribution compared with climate variables and HPD. We treated
them as unchanging in future prediction as their reliable projections are
not available. Actually, the use of static non-climate variables
(e.g., slope, soil type and land use/land cover) when predicting climate
change impacts in SDM studies is widely accepted (Peterson et al.,
2002), and previous work revealed that models including both static
variables and dynamic variables perform better than or as well as
those either masking or excluding the static variables (Iverson and
Prasad, 1998; Stanton et al., 2012). Therefore, although we considered
WTA and HIP as static in our study, the future range shifts of the species
would be hardly modified. However, it should be noted that if a non-
climatic variable is dominate for species distribution, such as HPD in
our study, the future dataset should be used in future prediction to
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ensure model transferability. In addition, to improve model reliability
and thereby model transferability in space and time, selection of
model testing and evaluation scheme and spatial autocorrelation
checking of the observation and environmental predictors should be
particularly concerned. This point is of vital importance not only for
presence-only models, but also for presence/absence models used in
our study, and should paid more attention in our future work.

4.2. Implications for conservation

The threatened CGS is a global conservation priority, but identifica-
tion of targeted conservation activities for this species is often impeded
by limited baseline data on its status and distribution (Fellowes et al.,
2009). Since the 1980s, nature reserves have been established in
many provinces to protect wild CGS populations. However, some of
the reserves have experienced inefficient management or increased
human access to the salamander's habitats (Pan et al., 2015). Our re-
search found that over half of the existing reserves would be unsuitable
for the CGS under the combined pressures of climate and HPD changes.
If further protection is not implemented, some of the reserves will lose
their functionality and value for the conservation of the species. We
show the stability shifts of each reserve under the independent impacts
of climate change and human pressures (Table 3), and these results
could be applied to develop specific mitigation strategies for different
reserves to maintain sustainability for the conservation of the CGS.
Our study reveals that human pressures will be primarily responsible
for the future range losses of this species. This pattern is consistent
with the wild population decline beingmostly attributed to overexploi-
tation. Therefore, a public information campaign aiming to better edu-
cate local inhabitants regarding the status and plight of this important
endemic species should be developed, and stricter legislation should
be implemented by the government to prohibit the harvesting of wild
CGSs. In addition, relevant agencies and bureaus should coordinate
and cooperate to ensure effective management. Only in these ways
can the largest salamander in theworld have long-term and sustainable
conservation.

In recent decades, CGS conservation activities have mainly involved
the government-supported release of farmed salamanders. However,
this strategy may be harmful to wild populations bymixing genetic lin-
eages and spreading pathogens, thereby driving extinction via genetic
homogenization (Turvey et al., 2018). Therefore, it is still imperative
to enhance conservation strategies to protect the wild habitat and pop-
ulations of the CGS. The identification of targeted conservation activities
for this species is often impeded by limited baseline data on its status
and distribution (Fellowes et al., 2009). The species range shifts over
space and time predicted by this research could help guide long-term
surveys throughout the species' range, detect undiscovered populations
and key habitats, understand the life history and genetic evolution of
the species, and protect this large and ancient salamander from
extinction.

5. Conclusion

This study used a set of SDMs and an ensemble model approach to
predict range shifts of the world's largest salamander under the single
and combined impacts of future changes in climate andHPD. The results
reveal that the ensemble model has the best performance in forecasting
the distribution of the CGS and that HPD is almost as important as cli-
mate factors in driving the distribution of this endangered species. Fu-
ture predictions revealed that HPD changes would play the most
important role in species range loss and noticeably fragment the habitat
compared to the effects of climate change. In addition, over half of the
existing nature reserves are likely to lose their suitable habitat under
the combined impacts of climate change and HPD change. In light of
this, reliable prevention and management strategies should be formu-
lated and implemented, in which lessening the impacts of human-
related pressures should be especially addressed. The results provide
baseline data that can be used to help protect the wild habitat and pop-
ulations of this species. Overall, the approach used in this work might
provide a valuable reference for research on other endangered species
aiming to predict and evaluate future range shifts, especially that on
species whose habitat and survival have been strongly affected by
human activities.
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