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Predictive models are widely used to investigate relationships between the 
distribution of fish diversity, abundance, and the environmental conditions in 
which they inhabit, and can guide management actions and conservation policies. 
Generally, the framework to model such relationships is established; however, 
which models perform best in predicting fish diversity and abundance remain 
unexplored in the Mekong River Basin. Here, we evaluated the performance of 
six single statistical models namely Generalized Linear Model, Classification and 
Regression Tree, Artificial Neural Network, k-Nearest Neighbor, Support Vector 
Machine and Random Forest in predicting fish species richness and abundance 
in the Lower Mekong Basin. We also identified key variables explaining variability 
and assessed the variable’s sensitivity in prediction of richness and abundance. 
Moreover, we explored the usefulness of an ensemble modeling approach and 
investigated if this approach improved model performance. Our results indicated 
that, overall, the six single statistical models successfully predicted the fish 
species richness and abundance using 14 geo-hydrological, physicochemical 
and climatic variables. The Random Forest model consistently out-performed 
all single statistical models for predicting richness (R2 = 0.85) and abundance 
(R2 = 0.77); whereas, Generalized Linear Model performed the worst of all models 
(R2 = 0.60 and 0.56 for richness and abundance). The most important predictors 
of variation in both richness and abundance included water level, distance from 
the sea and alkalinity. Additionally, dissolved oxygen, water temperature and total 
nitrate were important predictors of species richness, while conductivity was 
important for fish abundance. We  found that species richness increased with 
increasing water level, dissolved oxygen and water temperature, but decreased 
with increasing distance from the sea, alkalinity and total nitrate. Fish abundance 
increased with conductivity, but decreased with increasing distance from the 
sea, water level and alkalinity. Finally, our results highlighted the usefulness of 
ensemble modeling (R2 = 0.90 and 0.85 for richness and abundance) for providing 
better predictive power than any of the six single statistical models. Our results 
can be used to support Mekong River management, particularly fisheries in the 
context of contemporary regional and global changes.
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1. Introduction

In our fast-changing world, anthropogenic activities are putting 
freshwater ecosystems at risk by changing biodiversity pattern spatially 
and over time. Freshwater ecosystems are among the most vulnerable 
ecosystems on the planet (Allan et al., 2005; Ngor et al., 2018c; Ramsar 
Convention on Wetlands, 2018; Grill et al., 2019). In many regions, 
these spatial and temporal biodiversity changes go undocumented, 
and in these cases, research is urgently needed to document patterns 
and trends of biodiversity to improve conservation policies and 
management actions (Gaston and Blackburn, 1995; Darwall 
et al., 2018).

The Mekong Basin hosts an estimated 1,200 fish species (Rainboth, 
1996) and at least 32 annelids, 38 crustaceans, 131 aquatic insects, and 
146 mollusks (Köhler et al., 2012; Sor et al., 2020). Fish are important 
for ecological function and are key for the economic, sociocultural 
and food security of people inhabiting the basin (Poulsen et al., 2002; 
Hortle, 2007; Hortle and Bamrungrach, 2015). The Mekong River is 
one of the world’s biodiversity hotspots where livelihoods and food 
security of most people are derived from or closely related to riverine 
resources (MRC, 2003, 2010; Mittermeier et al., 2011; Allen et al., 
2012; Sor et al., 2017a; Ngor et al., 2018e; Ng et al., 2020; Sor et al., 
2020; Siriwut et al., 2021). Yet, the Mekong River is identified as one 
of the world’s regions that (i) has received little research on many 
aspects of its resources and ecology (Dudgeon, 2003; Sabo et al., 2017), 
(ii) faces increasing threats to water security and biodiversity (Hogan 
et al., 2004; Brooks et al., 2010; Mcintyre et al., 2010; Winemiller et al., 
2016; Sabo et al., 2017; Ngor et al., 2018b,c), (iii) is home to a rapidly 
increasing population at risk of nutritional deficiencies (Golden et al., 
2019) and (iv) has contentious trade-offs between economic growth 
and environmental degradation as a consequence of water-related 
development projects (Null et al., 2021).

Anthropogenic-caused disturbances facing the Mekong Basin and 
its fish resources are numerous. Forty-two hydropower dams are in 
operation, 29 are under construction and 76 planned along the 
Mekong River mainstream and its tributaries in the Lower Mekong 
Basin (LMB) (Ngor et al., 2018b; Soukhaphon et al., 2021). In addition, 
two mainstream hydropower dams (Xayaburi and Don Sahong) have 
been commissioned in the Mekong River mainstream in Laos, three 
more (Pak Beng, Luang Prabang and Pak Lay) have completed the 
Prior-Consultation Process and two more (Sanakham and Phou 
Ngoy) are being proposed (MRC website).1 Such changes and 
development inevitably disrupt longitudinal and lateral river 
connectivity, dampen flood pulses, mute flow seasonality and 
predictability (Poff et al., 2007; Ziv et al., 2012; Winemiller et al., 2016; 
Sabo et al., 2017; Ngor et al., 2018b,d; Barbarossa et al., 2020), degrade 
water quality (Oeurng et al., 2016; Chea et al., 2016a; Sor et al., 2021), 

1 https://www.mrcmekong.org/our-work/topics/hydropower/, 2022

and modify river morphology (Brunier et al., 2014). Combined with 
other human-induced stressors such as floodplain infrastructure 
development and pollution, overfishing, habitat loss (e.g., through 
deforestation and land use change) and warming temperature 
(Pokhrel et al., 2018; Ngor et al., 2018c; Arias et al., 2019; Lohani et al., 
2020; Namkhan et al., 2020; Chan et al., 2020b), aquatic biodiversity 
is declining. To mitigate these adverse effects, it is crucial to better 
support the management and conservation planning of LMB fish 
biodiversity using statistical models to predict biodiversity change.

In recent years, significant attention has been directed toward 
understanding how environmental drivers influence spatial and 
temporal variation in fish abundance and fishery yields in the 
LMB. Hydrological parameters are key fish migration triggers and 
determinants of species diversity, abundance and fisheries productivity 
in the lower Mekong system (Baran et al., 2001a; Baran, 2006; Sabo 
et al., 2017; Ngor et al., 2018b,d; Chan et al., 2019). Also, spatial and 
temporal variation in fish assemblages are linked to river ecological 
gradients, physicochemical parameters such as water temperature, 
dissolved oxygen, pH, total phosphorus and total nitrate, as well as 
climatic factors such as precipitation and temperature (Chea et al., 
2016b; Ngor et al., 2018a; Chan et al., 2020a). In other watersheds, 
geo-hydrological, physicochemical and land use/land cover variables 
are good predictors for determining fish assemblage structure such as 
species (relative) abundances and diversity, including in Chinese 
impounded lakes (Cheng et al., 2010, 2012; Guo et al., 2019), South 
Korea’s rivers (Kwon et al., 2012), European lakes and streams (Brosse 
et al., 1999; Grenouillet et al., 2011; Brucet et al., 2013) and in other 
natural lakes globally (Amarasinghe and Welcomme, 2002). Both 
descriptive (e.g., ordination methods) and predictive models using 
different sets of machine learning algorithms were applied in the 
above studies. Generally, statistical approaches to model such 
relationships are rich; however, it is poorly understood which models 
best predict the spatiotemporal variation in the diversity and 
abundances of multi-species fisheries in tropical river systems with 
high diversity like the Mekong.

Over the last decade, ensemble modeling has emerged as a 
powerful statistical modeling tool in ecology. Ensemble modeling is a 
technique used to reduce prediction uncertainty by combining the 
predictions of single statistical models (single-SMs) and averaging the 
prediction outputs. Previous studies reported that the performance of 
ensemble models is more robust and reliable than those of the 
single-SM, which commonly have varied and less reliable performance 
(Araújo and New, 2006; Grenouillet et al., 2011; Oppel et al., 2012; 
Guo et al., 2014). Application of the SMs in predicting continuous 
responses like species richness, abundance, density or biomass, is not 
as common as those predicting presence/absence responses. One 
reason for this may be that continuous data are difficult to predict and, 
in some cases, models provide unreliable predictions (Oppel et al., 
2012). Some existing studies applying SMs to predict continuous 
responses included the use of generalized linear models (GLM) to 
predict butterfly abundance (Hodgson et al., 2015), classification and 
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regression trees (CART) to predict macroinvertebrate richness and 
abundance (Boets et al., 2013), generalized additive models (GAM) to 
predict marine fish density (Young and Carr, 2015), multiple linear 
regression (MLR) and artificial neural networks (ANN) to predict fish 
abundance (Brosse et al., 1999). In the Mekong Basin, the utility of 
SMs to predict fish diversity and abundance has not been explored. In 
this system, the only existing implementation of SMs is for fish yield 
in the Tonle Sap River fishery using hydrological drivers (Sabo et al., 
2017) and the presence/absence prediction of macroinvertebrates (Sor 
et  al., 2017b). Here we  present the first application of combined 
single-SMs and ensemble approach to assess the SMs’ performances 
based on fish species richness and abundance.

In this study, we use time-series of physicochemical, climatic and 
geo-hydrological data to predict fish species richness and abundance 
of multi-species assemblages in the LMB. This study uses six common 
single-SMs and an ensemble model to (i) demonstrate whether there 
is significant variation in predictive performances among single-SMs 
and the ensemble model, (ii) identify which technique provides the 
best performance for predicting fish species richness and abundance 
in the LMB; and (iii) identify key predictive variables that explain 
variability in species richness and abundance in the LMB. Our study 
does not attempt to improve the performances of each of the six 
statistical models by modifying or adding the model’s parameters (e.g., 
model’s quadratic effects), but to explore the basic performances of 
each model using default model specifications provided by the 
statistical package.

2. Materials and methods

2.1. Data collection

The data used in this study include monthly fish richness (number 
of species), fish abundance (number of individuals), water levels, 
water quality, climate and distance from the sea. Here we used both 
air and water temperature as model predictors to understand if the 
variability of fish richness and abundance is influenced by climate or 
water quality change. Fish richness and abundance, water level and 
water quality data were obtained from the long-term fish and 
environmental monitoring programs of the Mekong River 
Commission (MRC); climate data were derived from the Climatic 
Research Unit (Harris et al., 2020) at http://www.cru.uea.ac.uk/data, 
and distance from the sea measured from the point of zero-elevation 
to each fish sampling site was calculated using ArcGIS.

Fish data were collected using the MRC’s Fisheries Programme’s 
standard sampling protocols described in MRC (2007) and Ngor et al. 
(2016). We selected eight fish sampling sites in the LMB, including 
six sites in the lower Mekong mainstream, one site in the Tonle Sap 
River and one site in the Bassac River (Figure 1) from June 2007 to 
May 2014. The sampling sites were chosen because fish and 
environmental time-series datasets were regularly collected. At each 
site, three professional fishers participated in a daily fish sampling 
program supervised by the MRC National Line Fisheries Agencies 
with technical coordination by a regional fish monitoring specialist. 
Generally, the sampling sites were relatively unchanged over the study 
period, and gillnets (length: 120 ± 50 m, height: 2–3.5 m, mesh size: 
3–12 cm, daily soak hours: 12 ± 2) were the most commonly used 
fishing gear to fish in riverine habitats and fish catches by species 

were recorded for the study (Ngor et al., 2018b). Captured fish were 
identified to species level and counted to estimate fish diversity and 
abundance in the LMB. Some 500 species (from 78 families) were 
recorded in the long-term MRC fish monitoring program, and 
among these, about 95% of the catch belonged to Cyprinidae (80%) 
and other common families included Pangasiidae, Cobitidae, 
Siluridae and Clupeidae (Ngor, 2018). We used a fish list containing 
~900 species from the Mekong Fish Database (MFD, 2003) and fish 
species were further cross-checked with FishBase (Froese and Pauly, 
2017) and other sources (Rainboth et al., 2012; Kottelat, 2013). Mean 
daily fish abundance data from three fishers at each site were 
aggregated to obtain the site’s total monthly fish abundance used in 
our study.

Water level and water quality data were monitored daily by the 
MRC in partnership with their member countries. We  used 
hydrological and water quality monitoring stations that are closest to 
the eight fish monitoring sites and averaged daily data to monthly 
data. Water quality variables used in this study were water 
temperature, pH, dissolved oxygen, water conductivity, total nitrite 
and nitrate (hereafter referred to as total nitrate), ammonium, total 
phosphorus, alkalinity, total suspended solids and chemical oxygen 
demand. Protocols for water quality sampling, preservation protocols 
and data analysis were based on the 20th edition of the Standard 
Method for the Examination of Water and Wastewater (Clescerl et al., 
1998) or the MRC standard (MRC, 2019). Mean air temperature was 
used in this study. All the predictive variables for the model are given 
in Table 1.

FIGURE 1

Study sites in the Lower Mekong Basin.
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2.2. Statistical model selection and 
preparation

The study used six common single-SMs namely Generalized 
Linear Model (GLM), Classification and Regression Tree (CART), 
Artificial Neural Networks (ANN), k-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), and Random Forest (RF). Detailed 
information about each SM was described in Lek and Guegan (1999), 
Sor et al. (2017b), Van Echelpoel and Goethals (2018), and Guo et al. 
(2019). All of these models used the same dataset, and thus each 
model was affected by equal bias. Given that there were some missing 
values in our dataset, our final analysis included monthly data from 
606 samples and 14 predictive variables, which we used to predict 
monthly fish richness and abundance in the LMB.

2.3. Model development and validation

Prior to developing the models, response variables were 
normalized between 0 and 1 to meet the requirement of modeling 
methods used in this study. Predictive variables were standardized to 
homogenize the relative strength of the predictors. The selected 
single-SMs were developed and validated using a k-fold cross-
validation (CV) procedure. This procedure randomly splits the whole 
dataset into k non-overlapping folds, and then uses k-1 folds for the 
model development process and the remaining 1 fold for the 
validation. This process is repeated k times so that at the end, each of 
the folds is used once as the validation set. The k-fold cross-validation 
is a robust method that is commonly used to estimate the accuracy of 
models by averaging the k results to produce a single estimate for a 
model. The replication of the k-fold CV (15 replicates in our case) is 
often conducted to assure model performance stability. We used the 
15-fold CV because the majority of model performance estimates were 
almost unbiased when k is between 10 and 20 folds (Kohavi, 1995). 
We  also made three replicates of the 15-fold CV cross-validation 

(Figure 2). Consequently, we developed and validated a total of 45 
statistical models for each of the six selected single-SMs in predicting 
both fish species richness and abundance in the LMB. In all, we built 
a total of 540 different statistical models for the six selected single-SMs 
(45 models × 6 single-SMs × 2) to predict fish richness and abundance 
in the LMB.

The predictions of all single-SMs in this study were performed 
using the ‘trainControl’ function, ‘method = repeatedcv’ of the ‘caret’ 
package (Kuhn, 2008) in the R programming language version 4.0.5 
(R Core Team, 2021). This package streamlines the process of building 
predictive models. The process of all single-SM development and 
validation on fish richness and abundance is summarized in Figure 2.

2.4. Model performance

We used three model performance measures, namely Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE) and 
Coefficient of Determination (R2) to evaluate and compare the 
overall performance of all single-SMs. MAE tells the magnitude of 
an error we  can expect from the forecast on average; whereas, 
RMSE shows the average distances between modeled and measured 
data (Moriasi et al., 2007; Guisan et al., 2013). R2 shows how well 
predictors explain the variation in response variables. The R2 values 
range from 0 to 1, where 1 represents perfect model fit. The optimal 
model is the one with the smallest value of MAE and RMSE and the 
highest value of R2. In addition, the ‘varImp’ function was applied 
on the fitted single-SMs to assess the relative importance of each 
predictor for each single-SM. Further, sensitivity analyses of GLM, 
ANN and RF response variables to key predictors were visualized 
using Lek’s profile method (Lek et al., 1995, 1996) computed with 
the ‘lekprofile’ function in the ‘NeuralNetTools’ package. Lek’s profile 
method explores the relationship between the outcome variable and 
a predictor of interest, while holding other predictors at 
constant values.

TABLE 1 Summary of predictive variables across the eight study sites in the Lower Mekong Basin.

Variable Abbreviation Unit Monthly 
minimum

Monthly 
maximum

Monthly 
mean

SD

Mean water level (above mean sea level) wl m 0.12 21.14 4.68 4.13

Water temperature Temp °C 19.2 33.0 27.8 2.4

Mean air temperature airtemp °C 15.9 31.0 26.8 2.3

Mean precipitation precip mm 0 1,249 163 158

Distance from the sea dist.sea km 106 2017 760.5 610.3

pH pH – 5.8 9.9 7.3 0.5

Dissolved oxygen DO mgL−1 2.14 10.18 6.71 1.17

Water conductivity Cond mSm−1 6.61 61.10 17.32 6.38

Total nitrite and nitrate (Total nitrate) NO3 mgL−1 0.00 0.88 0.23 0.15

Ammonium NH4 mgL−1 0.00 2.99 0.07 0.19

Total phosphorus P mgL−1 0.00 0.81 0.13 0.11

Alkalinity ALK meqL−1 0.35 2.64 1.24 0.44

Total suspended solids TSS mgL−1 1.50 802.00 103.30 113.62

Chemical oxygen demand COD mgL−1 0.12 15.03 3.22 2.11
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2.5. Statistical tests

Differences in performance measures among the models were 
tested using a non-parametric multiple comparison Kruskal Wallis rank 
sum test. To compare the difference in performance measures between 
models, pairwise Wilcox tests were used, with the pairewise.wilcox.test 
function of ‘stats’ package.

2.6. Ensemble prediction

The ensemble prediction is expected to provide robust results 
and improve the predictive performances when compared to any of 
the single-SM predictions (Grenouillet et al., 2011; Oppel et al., 2012; 
Guo et al., 2014). The approach is to average the outcome of multiple 
models by taking the mean. For this study, we therefore used the 
predicted results of the six single-SMs for both richness and 
abundance separately as the input for ensemble predictions. To 
perform the ensemble prediction, (i) ‘caretList’ function of 
‘caretEnsemble’ package was applied to build a list of train objects (for 
all single-SMs) that is necessary to pass to the ensemble prediction; 
(ii) ‘caretStack’ function was employed to combine the outputs from 
all single-SMs to create the ensemble model from the list of train 
objects in (i). The values of MAE, RMSE, R2 were then extracted from 
the results of the ensemble prediction to assess models’ performances. 
All predictions and statistical analyses were performed using R 
language program version 4.0.5 (R Core Team, 2021).

3. Results

3.1. Species richness prediction

Overall, the six single-SMs performed well in predicting observed 
fish species richness using geo-hydrological, physicochemical and 
climatic data in the LMB, with median R2 values ranging between 0.63 
for GLM and 0.85 for RF. The single-SM with the best performance 
was RF (Figure 3). The second-best performing single-SM was CART 
and the ranking was followed by SVM, ANN and KNN. GLM was the 

worst-performing model, with the lowest median R2 value and highest 
values of MAE and RMSE. The ensemble model representing the 
average of the six single-SMs performed best at predicting richness, 
with an R2 of 0.90, which was significantly better than other models.

Among the 14 predictive variables, water level (wl), distance from 
the sea (dist.sea), dissolved oxygen (DO), total nitrate (NO3), water 
temperature (Temp) and alkalinity (ALK) were the key predictors 
explaining the variation of fish species richness in the LMB (Figure 4). 
Indeed, all six-study single-SMs consistently indicated that these six 
key predictors were among the important variables to predict species 
richness in the LMB (Supplementary Information S1). Predictive 
variables that contributed the least in predicting species richness were 
ammonium (NH4) and chemical oxygen demand (COD) 
(Supplementary Information S1).

Sensitivity analyses showed the overall pattern of the contribution 
profile of the six key predictors using linear GLM, non-linear ANN and 
ensemble-tree RF (Figure 5). The linear model (GLM) showed species 
richness increased linearly with increasing water level, dissolved oxygen 
and temperature. However, species richness decreased with the other 
three predictors namely alkalinity, distance from the sea and total nitrate. 
Non-linear models (ANN and RF) indicated clear non-linear patterns for 
species richness in response to the increase in the predictor values 
(Figures 5B,C), with peaks that then declined in the response of fish 
species richness to increasing dissolved oxygen, temperature, and water 
level. This was most apparent with the RF model and suggests optimal or 
near optimal ranges of predictor variables for species richness. For 
instance, the RF model showed a sharp increase in species richness with 
increasing water levels; however, this pattern was flattened when there was 
a further increase in flow. Likewise, the RF model showed an initial peak 
in species richness as the distance from the sea increased; however, this 
pattern sharply declined with a longer distance from the sea. Overall, 
there was more variability in species richness from increasing water levels 
with non-linear models (ANN, RF).

3.2. Fish abundance prediction

Overall, all six single-SMs performed well in predicting fish 
abundance using geo-hydrological, physicochemical and climatic data 

FIGURE 2

Process of single statistical model (single-SM) and ensemble model development on fish species richness and abundance in the Lower Mekong Basin. 
GLM, Generalized Linear Model; CART, Classification and Regression Tree; ANN, Artificial Neural Network; KNN, k-Nearest Neighbor; SVM, Support 
Vector Machine; RF, Random Forest. ‘Green’ background color indicates the single-SM inputs and responses, ‘grey’ shows the assessment of single SM 
model quality and ‘yellow’ shows ensemble predictions.
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in the LMB, with median R2 values ranging between 0.58 for GLM and 
0.77 for RF. The second-best performance single-SM for fish 
abundance was SVM (R2 = 0.73), followed by KNN (R2 = 0.72), ANN 

(R2 = 0.69) and CART (R2 = 0.61). Consistently, the single-SM with the 
best performance for fish abundance was RF while the poorest 
single-SM was GLM, with a significantly lower R2 value and higher 
MAE and RMSE (Figure 6). The ensemble model performed best to 
predict fish abundance, with the highest median R2 value of 0.85, 
which was significantly higher than other models.

Among the 14 predictors, the four key predictive variables that 
explained the variation of fish abundance in the LMB were distance 
from the sea (dist.sea), water level (wl), alkalinity (ALK) and water 
conductivity (Cond) (Figure 7). Other predictors, notably ammonium 
(NH4) and precipitation (preci), contributed the least to explaining 
the variation in fish abundance. Single-SMs revealed major differences 
in terms of variable importance when predicting fish abundance. 
CART, KNN and SVM consistently indicated that distance from the 
sea, water level, alkalinity and conductivity were among the most 
important variables to predict fish abundance in the LMB. Water level 
and distance from the sea were the two most important variables to 
predict fish abundance for all single-SMs, except for ANN, where total 
nitrate and water temperature were more important than water level 
(Supplementary Information S2).

Figure 8 shows changes to fish abundance from changes in the 
four key predictive variables for the GLM, ANN, and RF models. The 
linear model (GLM) showed that fish abundance increased linearly 
with increasing water conductivity. However, fish abundance 
decreased with increasing alkalinity, distance from the sea and water 
level. Non-linear models (ANN and RF) indicated that fish abundance 
in response to the increase in the conductivity values (Figures 8B,C), 
with peaks that then declined sharply before the pattern was flattened. 
This was most apparent with the RF model and suggests optimal or 
near optimal ranges of predictor variables for fish abundance. 
Contrary to conductivity, in GLM, linear decrease in fish abundance 
was found to be connected with increasing distance from the sea, 
increasing water level and increasing alkalinity. However, it was 
observed that, in non-linear models especially RF, the initial increase 
in fish abundance was indicated when there was an increase in water 
level. The pattern was then followed by a sharp drop in abundance 
when there was a further rise in water level.

4. Discussion

4.1. Model performance

Our study is the first contribution from the LMB to the current 
literature on species richness and abundance prediction using SMs. It 
showed that the selection of single-SMs and modeling methods 
matters in predicting fish species richness and abundance of multi-
species assemblages in one of the world’s biodiversity hotspot regions. 
Overall, the six single-SMs and the ensemble (average) model in this 
study demonstrated a varied ability (with R2 values between 0.56 and 
0.90 of the total variability depending on the model used) to predict 
the species richness and abundance using geo-hydrological, 
physicochemical and climatic data. Consistently, RF performed best 
among all single-SMs in its predictive ability, with R2 values equal to 
0.85 and 0.77 for richness and abundance, respectively. More 
importantly, we confirmed that the ensemble model performed better 
(R2 = 0.90 and 0.85 for richness and abundance, respectively) than all 
single-SMs.

FIGURE 3

Distribution of Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE) and Coefficient of Determination (R2) of the single-SMs and 
the ensemble model (ENS) for species richness prediction in the 
Lower Mekong Basin. MAE and RMSE are unitless while R2 is % of the 
variation explained. For model abbreviations, see Figure 2. Note that 
the R2 of the ensemble model was 0.90, significantly higher than R2 
of RF which was 0.85. Mean values among model’s performance 
measures with a common letter are not significantly different at the 
0.05 level (Pairwise Wilcoxon Rank Sum Tests). Detailed Pairwise Test 
results on model’s performance measures are given in 
Supplementary Table S1.

FIGURE 4

Cumulative percentage contribution (%) of predictive variables to the 
overall performance of the single statistical models on species 
richness in the Lower Mekong Basin. Predictive variable abbreviations 
as in Table 1.
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In addition, our results indicated that the performance of the RF 
model was also very high and almost comparable to that of the 

ensemble model. This may not be surprising because RF incorporates 
the notion of ensemble modeling technique with thousands of trees 
being generated and predictions aggregated by averaging (Araújo and 
New, 2006). With this process, each decision tree is randomly built 
from the input dataset, and finally, all single trees are merged to get a 
more accurate and stable prediction (Breiman, 1996). Additionally, 
the best predictive performance of the ensemble model could be due 
to the low-pass filtering ability or cleaning effect of the average 
function (Marmion et al., 2009). Our results were in agreement with 
those of the previous SM work discerning that the performance of RF 
was very close to the performance of the ensemble model (Grenouillet 
et al., 2011; Guo et al., 2014). Overall, some SM models (e.g., GLM) 
did not perform well in our study. This is because each model has its 
own approach to predicting different characteristics of response 
variables, e.g., common and rare species (Guisan and Zimmermann, 
2000; Sor et al., 2017b). For instance, Sor et al. (2017b) found that 
ANN and GLM performed better in predicting rare species than 
other SMs. Our results strengthened the recommendations, e.g., 
(Araújo and New, 2006; Marmion et al., 2009; Grenouillet et al., 2011; 
Oppel et  al., 2012; Guo et  al., 2014) that the application of the 
ensemble modeling technique generally yields a more certain, robust 
and reliable result than those of the single-SMs, and may therefore 
be best for guiding biodiversity management and conservation policy 
decisions. In this regard, it is not impossible to predict continuous 
responses (i.e., observed fish species richness and abundance) in the 
LMB, a large tropical freshwater system that is being impacted by 
regional and global changes. Our findings here contradict that of 
Oppel et  al. (2012) who proved that it was extremely difficult to 
predict bird abundance in the coast of Portugal and Spain. This could 
be due to the strong adaptability of aquatic organisms to the Mekong 
River flood pulse environmental conditions. Changes in the system’s 

FIGURE 5

Sensitivity analyses of six key predictors for fish species richness (SR) using Lek’s profile method (response curves) with (A) Generalized Linear Model 
(GLM), (B) Artificial Neural Network (ANN) and (C) Random Forest (RF) models. The y-axis is scaled between 0 and 1, and the x-axis is the standardized 
values of predictors. For variable abbreviations, see Table 1. Line colors indicate the response of species richness to the scale of variable from the 
minimum (pink) to median (green) and maximum (red) and intermediate values of 30 range scales.

FIGURE 6

Distribution of Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE) and Coefficient of Determination (R2) of the six single-SMs 
and the ensemble model (ENS) for fish abundance prediction in the 
Lower Mekong Basin. For model abbreviations, see Figure 2. Note 
that the R2 of the ensemble model was 0.85, higher than the R2 of RF 
which was 0.77. Mean values of model performance measures with a 
common letter are not significantly different at the 0.05 level 
(Pairwise Wilcoxon Rank Sum Tests). Detailed Pairwise Test results on 
model’s performance measures are given in Supplementary Table S2.
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environmental conditions, e.g., seasonality and predictability of 
hydrology would likely cause changes in fish diversity and community 
structure (Ngor et al., 2018a,b,d). Our modeling results may therefore 
contribute to the ecological impact assessment and the management 
of aquatic ecosystem health, particularly fisheries health in the 
context of regional development (e.g., increasing hydropower dam) 
and climate change in the Mekong and other large tropical flood pulse 

freshwater systems. For example, statistical models have been used to 
conduct a risk assessment to support wetland restoration and 
conservation in an Indian wetland (Ghosh and Das, 2020), and to 
evaluate the flood hazard risk and management options in the 
Dongjiang River Basin, China (Wang et al., 2015). In the Mekong 
River Basin, statistical models could be used to evaluate the benefits 
of restoration, or the trade-offs between flood hazard risk 
management and fisheries health.

4.2. Important variables to species richness

We found that water levels and distance from the sea are the most 
important predictors of fish species richness variability. Water levels 
are widely known to be the key ecological trigger to fish migration in 
the lower Mekong system (Ngor, 2000; Baran et al., 2001a,b; Baran, 
2006; Ngor et al., 2018c). Increasing water levels signal fish migration 
for reproduction or dispersal. Mekong fish often leave permanent 
water bodies during the early wet season, moving to floodplains with 
improved environmental conditions (e.g., often with favorable 
conditions of dissolved oxygen, temperature and access to food and 
habitat) primarily for rearing and feeding (Matthews, 1998; Poulsen 
et al., 2002; Ngor et al., 2018a,e; Pin et al., 2020). We also found that 
fish species richness increased with increasing dissolved oxygen (min: 
2.14, max:10.81 mgL−1) and water temperature (min: 19.2, max: 
33.0°C); see Table 1 for the values of predictors. Indeed, increasing 
water levels (i.e., from dry to wet season) are significantly linked to the 
increase in dissolved oxygen in waters (Soum et al., 2021), and in 
habitat or water surface connectivity within the LMB’s river network 
and its surrounding floodplains, and thus more favorable water 

FIGURE 7

Cumulative contribution (%) of predictive variables to the overall 
performance of the single statistical models on fish abundance in the 
Lower Mekong Basin. Predictive variable abbreviations as in Table 1.

FIGURE 8

Sensitivity analysis of four key predictors for fish abundance (AB) using Lek’s profile method (response curves) with (A) Generalized Linear Model (GLM), 
(B) Artificial Neural Network (ANN) and (C) Random Forest (RF) models. The y-axis is scaled between 0 and 1, and the x-axis is the standardized values 
of predictors. For variable abbreviations, see Table 1. Line colors indicate the response of fish abundance to the scale of variable from the minimum 
(pink) to median (green) and maximum (red) and intermediate values of 30 range scales.
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conditions and habitats available for fish (Poulsen et al., 2002; Ngor, 
2018; Ngor et al., 2018a). Such conditions give fish species a colonizing 
advantage, which drives greater species richness and diversity 
(Henriques-Silva et  al., 2013; Laske et  al., 2016). The pattern of 
increasing water surface coverage was also described as one of the 
most significant variables explaining the increase in species richness 
in Venezuela’s Cinaruco River (Rodríguez and Lewis, 1997; 
Hoeinghaus et  al., 2003) and in the Brazilian Pantanal River 
(Fernandes et  al., 2010). Also, the positive association between 
richness and temperature is likely explained by the difference in the 
ecological gradient of our study sites. Sites situated in the upper reach 
of the LMB (with higher elevation and lower species richness) 
generally have lower temperatures than sites in the lower floodplain 
where there is higher species richness. Moreover, our results were in 
line with those of recent studies indicating that there was significantly 
higher species richness in the wet season than in the dry season, 
particularly in the Mekong River mainstream and its tributary habitats 
(Pin et al., 2020). Fish species composition (beta diversity) of the lower 
Mekong River system was also observed to be significantly unique 
during increasing water levels in the early part of the wet season (Ngor 
et al., 2018b).

Further, decreasing richness was predicted to be connected with 
increasing distance from the sea. In other words, richness increased 
along the ecological (upstream-downstream) gradient toward the 
lower floodplain of the LMB. The result was consistent with broad-
scale patterns of fish diversity in the LMB with greater species richness 
in the lower floodplain, i.e., the Mekong delta closest to the sea (Chea 
et al., 2016b). The increase in species richness was also explained by 
the ‘addition’ concept where the addition of fish species took place in 
the downstream floodplain. The addition concept has been widely 
observed in many river systems in both tropical and temperate zones 
alike, due to an increase in habitat diversity (species-area relationship 
theory) and improved environmental conditions for rearing and 
feeding (Oberdorff et al., 1993; Bistoni and Hued, 2002; Suvarnaraksha 
et  al., 2012). Interestingly, in the non-linear models, increasing 
distance from the sea initially showed a sharp increase in species 
richness, and then followed by a drastic decline in richness with the 
increase in distance from the sea. This may indicate the important area 
of the middle system in the LMB in Cambodia particularly the 
Mekongg-3S system as a fish biodiversity hotspot. This result is in 
agreement with previous studies indicating the high fish diversity in 
Cambodia and the Mekong-3S (Chea et al., 2016b; Ngor et al., 2018b; 
Pin et al., 2020). Moreover, our results revealed that species richness 
decreased with increasing alkalinity and total nitrate. Increasing 
concentration of the two variables by anthropogenic activities might 
cause water pollution and thus likely reduced species richness. They 
were found to have a significant negative relationship with hydrological 
parameters including water level and precipitation, while positively 
correlated with evaporation and temperature (Prathumratana et al., 
2008). This may indicate that higher concentration of alkalinity and 
total nitrate takes place in the low flow period. Low flows, i.e., during 
the dry season or droughts, indeed could cause detrimental effects on 
fish biota and, thus decrease species richness (and possibly 
abundance), as a consequence of increased water pollution with high 
alkalinity and decreased dissolved oxygen, and increased biochemical 
oxygen demand by microbes and decreased dissolved organic carbon 
(Dahm et  al., 2003; Prathumratana et  al., 2008; van Vliet and 
Zwolsman, 2008).

4.3. Important variables to fish abundance

Similar to fish species richness, higher fish abundance was linked 
to decreasing distance from the sea. In the LMB, the major flood zone 
where large fisheries yields occur is predominately located in the lower 
floodplain of Cambodia (55% of the total yield) and the Mekong Delta 
of Vietnam (25%) while only 9 and 11% of the total yield is observed 
in the upper reach of the LMB in Laos and Thailand, respectively 
(Hortle and Bamrungrach, 2015). Higher fish abundance in the lower 
floodplain closer to the sea may be due to availability of better and 
more habitat and food sources for fish, and especially young fish, to 
rear, feed and grow during high flow periods. This result further 
reinforces the importance of maintaining environmental health and 
ecological connectivity in the lower floodplain (Arias et al., 2019) in 
support of sustainable fishery yields that are necessary to feed millions 
in the region.

Opposite to species richness, we discovered that fish abundance 
increased with decreasing water levels. This can be due to fish seasonal 
migrations that are fine-tuned with seasonal hydrology of the Mekong. 
In the lower Mekong system, increasing water level facilitates fish 
dispersal from upstream to downstream inundated areas in the lower 
floodplains with increased habitat diversity during the wet season for 
fish rearing and feeding. During the period, fish are widely dispersed 
with seasonal floods over huge flooded plains in the basin. This may 
drive lower fish abundance as lower fish density is expected during the 
high flow which makes it difficult for fishers to capture them in large 
quantities. When water level recedes during the dry season, fish that 
have been reared and fed in the flooded plains migrate back to the 
deeper area of water bodies or main river channels such as lakes and 
deep pools for dry season refuge. Many fishes in large quantities are 
vulnerable to being captured during their dry season migrations and 
during their sedentary period in the dry season refuge since they tend 
to concentrate in high density in those habitats. This drives greater 
abundance of fish during lower flows. In fact, intensive fishing activities 
take place during the periods of decreasing flow in many parts of the 
LMB both for subsistence and commercial-scale fisheries, e.g., the 
century-old, commercial-scale stationary trawl bagnet fishery in the 
Tonle Sap River. The fishing activities particularly happen when the 
water levels drop to about the average flow level between the highest 
and lowest flow in December and January at the Tonle Sap River (Ngor, 
2000; Halls et al., 2013; Sabo et al., 2017; Ngor et al., 2018c).

Interestingly, we predicted fish abundance would increase with 
increasing conductivity in water. This is likely reasonable because 
increased conductivity is generally accompanied by decreasing flow 
and higher temperature, and during the period, there is more 
concentration of dissolved substances, chemicals and minerals in water 
(Prathumratana et al., 2008; Izaguirre et al., 2018; Sensorex, 2021). 
Therefore, in the LMB, high water conductivity tends to occur during 
decreasing water levels concomitant with high fish abundance being 
generally harvested particularly during the first three to 4 months of 
the dry season (October–January) (Halls et  al., 2013; Ngor et  al., 
2018a,c). This causal relationship may explain our result of increased 
fish abundance being linked to increased conductivity in water. 
However, toward the end of the dry season (March–April) which is 
among the driest period of the year, significantly high conductivity and 
alkalinity could occur in tandem due to high minerals and chemical 
pollutants entering the water, e.g., from agriculture, industries and 
urban sewages drained directly to rivers (Prathumratana et al., 2008; 
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Sensorex, 2021). High conductivity, e.g., greater than 50 mSm−1 could 
be harmful to stream fish (Zhang et al., 2019). In the LMB, maximum 
conductivity was recorded at 61.10 mSm−1 in this study.

Finally, our study found that high fish abundance was related with 
decreased alkalinity. In polluted rivers, high alkalinity was associated 
with low oxygenation conditions, e.g., (Abril and Frankignoulle, 2001). 
In the LMB, high alkalinity was found to be  connected with low 
precipitation and flow, but high evaporation and temperature 
(Prathumratana et  al., 2008). This indicates that high alkalinity 
predominantly exists in the warmest months of the year (March–April), 
and could cause hypoxic conditions that could be harmful to aquatic 
biota. This may drive the inverse relationship between fish abundance 
and alkalinity in the LMB. Such relationship was also indicated for some 
stream fishes in eastern Thailand (Tongnunui and Beamish, 2009).

5. Concluding messages

Our study (1) quantified the predictability of six single-SMs, (2) 
identified the best single-SM, (3) identified three important 
environmental predictive variables and (4) highlighted the advantages 
of ensemble models. First, the six single-SMs used in this study 
demonstrated relatively high variability, but good ability to predict 
observed (continuous) fish species richness and abundance of this 
large, complex tropical freshwater ecosystem, the Mekong, using 
geo-hydrological, physicochemical and climatic data. Second, among 
the six-study single-SMs, RF model consistently performed best in 
predicting species richness and abundance of multi-species 
assemblages. Third, the three predictors that explained most of the 
variability in both richness and abundance included water level, 
distance from the sea and alkalinity. Additionally, dissolved oxygen, 
water temperature and total nitrate were among the important 
predictive variables to explain the variability in species richness while 
conductivity was important for fish abundance. We also found that 
species richness increased with increasing water level, dissolved 
oxygen and water temperature, and decreased with increasing distance 
from the sea, alkalinity and total nitrate. Fish abundance increased 
with increasing conductivity, but decreased with increasing distance 
from the sea, water level and alkalinity. Fourth, our results also 
highlighted the usefulness of ensemble modeling approach for 
providing a more robust and reliable predictive power than that of any 
single-SMs. Our results have important applications to the 
management of aquatic ecosystem health particularly Mekong’s 
fisheries in the context of contemporarily regional and global change. 
The modeling approach may be applied to assess environmental risks 
associated with water development projects and climate change in the 
region in support of the sustainable fisheries management and 
conservation.We also propose continued monitoring of water levels 
and important water quality parameters identified in this study to 
understand the environmental impacts that may originate from 
regional development projects including hydropower dams and 
climate change.
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