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� Invasion risk and its determinants are
important for invasive species’
management.

� Sharpbelly’s global habitat suitability
and its determinants were first
forecasted.

� A global risk map was drawn with
habitat suitability and introduction
likelihood.

� Areas with high invasion risk by
sharpbelly spread over the world
except Antarctica.

� Human Influence Index was the most
critical factor shaping sharpbelly’s
invasion.
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Invasive species have imposed huge negative impacts on worldwide aquatic ecosystems and are gener-
ally difficult or impossible to be eradicated once established. Consequently, it becomes particularly
important to ascertain their invasion risk and its determinants since such information can help us formu-
late more effective preventive or management actions and direct these measures to those areas where
they are truly needed so as to ease regulatory burdens. Here, we examined the global invasion risk
and its determinants of sharpbelly (Hemiculter leucisculus), one freshwater fish which has a high invasive
potential, by using species distribution models (SDMs) and a layer overlay method. Specifically, first an
ensemble species distribution model and its basal models (developed from seven machine learning algo-
rithms) were explored to forecast the global habitat-suitability and variables importance for this species,
and then a global invasion risk map was created by combining habitat-suitability with a proxy for intro-
duction likelihood (entailing propagule pressure and dispersal constraints) of exotic sharpbelly. The
results revealed that (1) the ensemble model had the highest predictive power in forecasting sharpbelly’s
global habitat-suitability; (2) areas with high invasion risk by sharpbelly patchily spread over the world
except Antarctica; and (3) the Human Influence Index (HII), rather than any of the bioclimatic variables,
was the most important factor influencing sharpbelly’ future invasion. Based on these results, the present
rpbelly
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study also attempted to propose a series of prevention and management strategies to eliminate or alle-
viate the adverse effects caused by this species’ further expansion.

� 2019 Elsevier B.V. All rights reserved.
1. Introduction

During the past two centuries, the number of non-indigenous
species (NIS) worldwide has increased considerably (Sala et al.,
2000; Seebens et al., 2017), causing severe ecological and economic
hazards to their recipient regions (Millennium Ecosystem
Asseement, 2005). Among these NIS, the sharpbelly Hemiculter leu-
cisculus (Basilesky, 1855), one small freshwater fish with minor
commercial importance, is of particular concern and an iconic
example that can be used to illustrate these deleterious impacts.
This fish is natively distributed in Far East Russia, Mongolia, Korean
Peninsula, China, and Vietnam (CABI, 2016), but has successfully
established invasive populations in many countries outside its
native range, including Afghanistan, Iran, Iraq, Kazakhstan, Uzbek-
istan, Turkmenistan, and Azerbaijan (Mustafayev et al., 2015; CABI,
2016). In these novel habitats, this species has been found to ham-
per local aquaculture activities either by competing with the juve-
niles of farmed fish or directly feeding on their eggs and fry (CABI,
2016), trigger taxonomic homogenization of indigenous ichthy-
ofauna through displacing native small fish species (Rosenthal,
1976), and even put public health into a dangerous situation via
transmitting the parasite Diplostomum spathaceum (Rudolphi,
1819) of human eye fluke disease (Palmieri et al., 1976; Sattari
et al., 2007). Due to these detrimental effects, this species has been
recently listed as one of the most dangerous and potential invaders
to Turkey waters (Tarkan et al., 2014; Tarkan et al., 2015; Tarkan
et al., 2017). Worse still, after scrutinizing the propagation path-
ways of H. leucisculus, Smith et al. (2014) presumed that this spe-
cies is probable to follow the footprint of the notorious small
Asian cyprinid fish Pseudorasbora parva (Temminck & Schlegel,
1846), which has made trans-continental invasion within 50 years
(Gozlan et al., 2010) and is deemed to be difficult or impossible to
be eradicated from those invaded regions (Britton et al., 2010;
Aparicio et al., 2012). This status exacerbates the urgency of taking
preventive measures to halt or restrain the expansion of H. leucis-
culus into new water bodies, especially where the environmental
conditions are suitable for its establishment and subsequent inva-
sion. In this context, it becomes particularly imperative to select a
proactive tool to ascertain this undesirable species’ global invasion
risk and its determinants since such information can help us for-
mulate more effective preventive or managerial actions and direct
these measures to those areas where they are truly needed
(Reshetnikov and Ficetola, 2011; Poulos et al., 2012; Guisan
et al., 2013).

Species distribution models (SDMs), which depict the associa-
tions between species observation data and underlying environ-
mental parameters, have been testified to be quite a useful
proactive tool to discern invasion potential and its determinants
of invasive organisms (Peterson, 2003; Guisan and Thuiller, 2005;
Reshetnikov and Ficetola, 2011; Poulos et al., 2012; Banha et al.,
2017). There are many algorithms available for a specific applica-
tion scenario, but each of them has some uncertainties
(Grenouillet et al., 2011). Hence, in practice, many scientists rec-
ommended ensemble model (i.e. to merge or join the outputs of
several basal models) for reducing the uncertainties of individual
algorithms (Araújo and New, 2007; Buisson et al., 2010;
Grenouillet et al., 2011; Li and Wang, 2013). Hitherto, this consen-
sus method has been applied to a variety of aquatic invasive spe-
cies to delineate their invasion potential in those areas where
nouillet et al., Spatial pattern a
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invasion has not yet been made or observed, such as the eastern
mosquitofish Gambusia holbrooki Girard, 1859 (Murphy et al.,
2015), the Chinese mitten crab Eriocheir sinensis (H. Milne-
Edwards, 1853) (Zhang et al., 2019), the golden apple snail Poma-
cea canaliculata (Lamarck, 1819) (Lei et al., 2017), and the Asian
clam Corbicula fluminea (O. F. Müller, 1774) (Gama et al., 2015).

However, reviewing the assumptions of SDMs, we can easily
find that these aforementioned studies only presented current
habitat-suitability for these aquatic invasive species, but did not
treat bio-invasion as a process (Banha et al., 2017) and paid little
attention on those key factors related to their invasion success,
such as propagule pressure (i.e. individuals number into a non-
native environment), geographical dispersal constraints (e.g.
anthropogenic or natural barriers), biotic interactions, and species
traits (Araújo and Guisan, 2006; Ficetola et al., 2007; Sax et al.,
2007; Filipe et al., 2013; Banha et al., 2017). Actually, whether or
not one invasive species can appear in a particular location clearly
more depends on these key factors rather than habitat-suitability
(Araújo and Pearson, 2005; Araújo and Guisan, 2006; Williams
et al., 2008; Václavík and Meentemeyer, 2009; Banha et al.,
2017). Although some invasion biologists have demonstrated that
taking these elements into consideration can make the invasion
risk assessment closer to the true one (Gallardo and Aldridge,
2013; Gallardo, 2014), only a limited number of studies to date
have followed this advice (To our knowledge: Gallardo and
Aldridge, 2013; Gallardo, 2014; Bradie and Leung, 2015; Fletcher
et al., 2016; Banha et al., 2017).

With this in view, being different from two previous works car-
ried out in the conterminous USA, which both only adopted one
single algorithm: the Genetic Algorithm for Rule-Set Production
(GARP) (Chen, 2008) and the Euclidian algorithm (Sanders et al.,
2014), the present study used an ensemble model and its basal
models to forecast the global habitat-suitability and its determi-
nants for the invasive species H. leucisculus, and then overlaid the
habitat-suitability with a proxy for introduction likelihood (entail-
ing two key factors: propagule pressure and dispersal constraints)
to produce a global risk map for this invader (Hulme, 2009). We
sought to answer the following questions: (1) what is the spatial
pattern of invasion risk of H. leucisculus at a global scale; (2) which
are the most influential environmental variables that drive the
invasion of H. leucisculus; and (3) how can we impede or mitigate
further expansion of this problematic fish in the future.

2. Materials and methods

2.1. Species presence/pseudo-absence dataset

Presence records of H. leucisculus complied with the literature
review (n = 362), FishBase (http://www/fishbase.org; retrieved in
February 2019), and the Global Biodiversity Information Facility
(GBIF; http://www.data.gbif.org/; retrieved in February 2019).
The latest presence was recorded in 2019. After removing the
duplicate, incomplete, and apparently-erroneous entries (e.g. ter-
restrial records), we preliminarily derived 614 inhomogeneously-
distributed records, with higher density in the native range and
lower density in the invasive range (Fig. 1). In order to diminish
the effect of spatial auto-correlation originated from spatial clus-
tering of presence records (i.e. more than one presence records
dropped in one environmental grid cell with 2.5 arc-minutes spa-
nd determinants of global invasion risk of an invasive species, sharpbelly
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Fig. 1. Distribution of native (black solid circles) and invasive (red solid circles) populations of sharpbelly Hemiculter leucisculus. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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tial resolution, ca. 4.5 km2 at the equator), a spatial thinning or rar-
efying approach similar to that used by Riul et al. (2013) and Boria
et al. (2014) was operated on our presence dataset, resulting in
that at most one record was contained in each environmental grid
cell. Correspondingly, 541 presence records of H. leucisculus were
finally retained. Seeing that presence-absence algorithms should
perform better than presence-only algorithms (Elith et al., 2006)
and the true absence records of H. leucisculus at a global scale are
impossible to be accessed confidently, we instead generated 541
pseudo-absence records (PAs) spanning the globe using a random
method conditioned by excluding pixels where presences are
known (Capinha et al., 2011; Barbet-Massin et al., 2012; Jensen
et al., 2017). Afterwards, we combined these pseudo-absence
records with those retained presence records, and then shuffled
the whole dataset to obtain the ultima species presence and
pseudo-absence dataset for posterior analysis.
2.2. Environmental variables

Based on the previous studies (Chen, 2008; Sanders et al., 2014)
and our expert’ opinions, three types of environmental variables
considered ecologically meaningful for spatial distribution of H.
leucisculus were initially selected to compose the candidate predic-
tors of the present study: (1) the Global Human Influence Index
(HII; an unitless synthetic variable consisting of four data types’
proxies for human influence: human settlement, land transforma-
tion, infrastructure, and human access), which represents direct
human disturbance over the land surface (Sanderson et al., 2002)
and ranges from 0 (no impact) to 64 (maximum impact) (SEDAC,
2005; Sandel and Svenning, 2013; Yohe et al., 2014); (2) Global
Reservoirs and Dams (ResDam; water surfaces) (Lehner et al.,
2011); and (3) 19 bioclimatic variables (BIO1-BIO19), which are
commonplace in the field of ecological niche modeling (Hijmans
et al., 2005). All the 21 raster-based variable layers were re-
sampled using the method of bilinear interpolation, and then stan-
dardized, aiming to make themselves share the same resolution
(2.5 arc-minutes, ca. 4.5 km2 at the equator), spatial extent, and
geographic coordinate system (WGS 1984 datum), as well as
reduce dimension effects on the models (Vander Zanden et al.,
2004; Fletcher et al., 2016). Prior to further processing, the variance
inflation factor (VIF) for each candidate predictor variable layer
was calculated and the superfluous predictor variable layer (whose
VIF value is more than 10) was removed (Conoscenti et al., 2016;
Please cite this article as: X. Dong, T. Ju, G. Grenouillet et al., Spatial pattern a
Hemiculter leucisculus (Basilesky, 1855), Science of the Total Environment, http
Duque-Lazo et al., 2018) so as to avoid over-fitting, obtain more
succinct or interpretable models and eliminate the effects of mul-
ticollinearity (Dormann et al., 2013; Li et al., 2015; Fletcher et al.,
2016; Júnio and Nóbrega, 2018). As a result, six non-redundant
predictor variable layers which consisted of the final set of predic-
tive variables for subsequent modeling were obtained: mean tem-
perature of driest quarter (BIO8); precipitation seasonality
(BIO15); precipitation of warmest quarter (BIO18); precipitation
of coldest quarter (BIO19); HII; and ResDam (Table 1).
2.3. Ensemble modeling

Hybrid or ensemble models have been proved superior to single
algorithms as this framework can reduce uncertainties of the latter,
and provide more robust and reliable projections (Araújo and New,
2007; Thuiller et al., 2009; Grenouillet et al., 2011; Poulos et al.,
2012; Fletcher et al., 2016; Bae et al., 2018). Here, we opted for
seven different algorithms that have been frequently applied in
the field of ecological niche modeling to evolve the basal models
required by the ensemble model of the present study. These algo-
rithms were Generalized linear model (GLM), Generalized boosting
model (GBM), Generalized additive model (GAM), Flexible discrim-
inant analysis (FDA), Artificial neural network (ANN), Multiple
adaptive regression splines (MARS), and Random forest (RF). All
these algorithms were fitted using the default settings on
biomod2-platform (Thuiller et al., 2016) in an open-source statisti-
cal software R 3.5.0 (R Core Team, 2018), as these configurations
are suitable for most scenarios (Li et al., 2013; Zhang et al.,
2019). In fitting these algorithms, a random 70% of the records
(n = 757) were chosen as the training set to calibrate these algo-
rithms and the remaining 30% (n = 325) were withheld for evaluat-
ing these algorithms’ performance, i.e. predictive power (Thuiller
et al., 2016; Molloy et al., 2017). This process was replicated 10
times to account for individual algorithms variabilities, avoid bias
from the dataset split, and add rigour to the results (Molloy
et al., 2017; Singer et al., 2017; Bae et al., 2018). Thus, 10 different
basal models were yielded for each algorithm. Basal models and
subsequent ensemble model performances and idiosyncrasies
were assessed by the scores of the area under the curve (AUC) of
receiver operating characteristic (ROC), which has the advantage
of being prevalent and threshold-independent (Fielding and Bell,
1997; Franklin, 2010; Duque-Lazo et al., 2018). According to
Swets (1988) and Duan et al. (2014), this metric ranges from 0 to
nd determinants of global invasion risk of an invasive species, sharpbelly
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Fig. 2. Boxplots (horizontal lines within boxes: medians; boundaries of boxes: 25%
and 75% quantiles; whiskers: lower and upper inner fences; black solid circles:
outliers) showing the performance of the models, evaluated by the score of the area
under the curve (AUC) of the receiver-operating characteristic (ROC). GLM, GBM,
GAM, FDA, ANN, MARS, RF, and Enwm are Generalized linear model, Generalized
boosting model, Generalized additive model, Flexible discriminant analysis, Arti-
ficial neural network, Multiple adaptive regression splines, Random forest, and
mean-weighted Ensemble model, respectively. Blue solid circles represent the AUC
scores of the 10 repetitions of the seven different modeling algorithms used in the
present study. Numerical values in red are the median of the AUC scores of each
approach. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Description of alternative abiotic factors used in the present study. Variables with bold font were retained for modeling procedures.

Database Description Code Source

WorldClim Annual Mean Temperature BIO1 http://www.worldclim.org/bioclim
WorldClim Mean Diurnal Range (Mean of monthly (max temp – min temp)) BIO2 http://www.worldclim.org/bioclim
WorldClim Isothermality (BIO2/BIO7) (* 100) BIO3 http://www.worldclim.org/bioclim
WorldClim Temperature Seasonality (standard deviation *100) BIO4 http://www.worldclim.org/bioclim
WorldClim Max Temperature of Warmest Month BIO5 http://www.worldclim.org/bioclim
WorldClim Min Temperature of Coldest Month BIO6 http://www.worldclim.org/bioclim
WorldClim Temperature Annual Range (BIO5-BIO6) BIO7 http://www.worldclim.org/bioclim
WorldClim Mean Temperature of Wettest Quarter BIO8 http://www.worldclim.org/bioclim
WorldClim Mean Temperature of Driest Quarter BIO9 http://www.worldclim.org/bioclim
WorldClim Mean Temperature of Warmest Quarter BIO10 http://www.worldclim.org/bioclim
WorldClim Mean Temperature of Coldest Quarter BIO11 http://www.worldclim.org/bioclim
WorldClim Annual Precipitation BIO12 http://www.worldclim.org/bioclim
WorldClim Precipitation of Wettest Month BIO13 http://www.worldclim.org/bioclim
WorldClim Precipitation of Driest Month BIO14 http://www.worldclim.org/bioclim
WorldClim Precipitation Seasonality (Coefficient of Variation) BIO15 http://www.worldclim.org/bioclim
WorldClim Precipitation of Wettest Quarter BIO16 http://www.worldclim.org/bioclim
WorldClim Precipitation of Driest Quarter BIO17 http://www.worldclim.org/bioclim
WorldClim Precipitation of Warmest Quarter BIO18 http://www.worldclim.org/bioclim
WorldClim Precipitation of Coldest Quarter BIO19 http://www.worldclim.org/bioclim
SEDAC Global Human Influence Index HII http://sedac.ciesin.columbia.edu/data/sets/browse
SEDAC Global Reservoir and Dam ResDam http://sedac.ciesin.columbia.edu/data/sets/browse

aNote: SEDAC is the abbreviation of socioeconomic data and applications center.
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1 and the evaluation criteria are as follows: poor model (0.5–0.7),
fair model (0.7–0.9), and excellent model (0.9–1). Following this
standard, only basal models with enough discriminatory capacity
(i.e. AUC score greater than 0.9) were finally retained to develop
the ensemble model as this can ensure that our ensemble model
has comparatively the strongest power to predict the occurrence
probability of H. leucisculus across the world (Zhang et al., 2019).
Specifically, we built our ensemble model using a simple weighted
mean of all qualified basal models, giving more weights to those
ones with high AUC scores (Jensen et al., 2017). We also deter-
mined the variables importance and species response curves for
each basal model using an inbuilt randomization procedure
(Thuiller et al., 2016; Navarro-Cerrillo et al., 2018) and evaluation
strip method (Elith et al., 2005; Bellard et al., 2016), respectively.
More details about modeling procedures can be found in the R
script pertaining to the present study, which has been provided
in the supplementary file.

2.4. Global invasion risk map

In light of that associating variables with introduction likeli-
hood (entailing two key factors: propagule pressure and dispersal
constraints) could provide a better view of the areas with potential
invasion (Banha et al., 2017), and that aquaculture or pertinent
activities were the main spread pathways of H. leucisculus
(Kolpakov et al., 2010; Esmaeili et al., 2011; Nitta et al., 2017),
we multiplied the projected occurrence probability layer of H. leu-
cisculus by an ‘‘Aquaculture Pressure” data layer (http://www.
riverthreat.net/data.html) to obtain a more realistic invasion risk
map (Fletcher et al., 2016). The ‘‘Aquaculture Pressure” data layer
used herein, ranging from 0 to 1, was treated as a proxy for intro-
duction likelihood of H. leucisculus, and created from the UN Food
and Agriculture Organisation’s (FAO) FishStat Plus database
(http://www.fao.org/fishery). Details of this layer were given in
Vörösmarty et al. (2010).

3. Results

3.1. Predictive model performance

The predictive power of the seven modeling algorithms was
consistently excellent (no AUC scores less than 0.9) though there
Please cite this article as: X. Dong, T. Ju, G. Grenouillet et al., Spatial pattern a
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existed some variation among the 10 basal models within the same
algorithm (Fig. 2). Based on the median of the AUC scores, RF was
the most predictive algorithm (AUC = 0.955), followed by GBM
(0.951), GAM (0.947), MARS (0.944), FDA (0.942), ANN (0.941),
and GLM (0.934). As expected, the ensemble model surpassed all
of the individual algorithms, with the highest AUC score of 0.972.
3.2. Variables importance and response curves

Of the six environmental variables, HII (mean ± SE = 0.329 ±
0.030), BIO18 (0.267 ± 0.026), BIO15 (0.080 ± 0.009), and BIO8
(0.040 ± 0.015) were the four most influential factors to the occur-
rence probability of H. leucisculus, whereas ResDam (0.010 ± 0.004)
nd determinants of global invasion risk of an invasive species, sharpbelly
s://doi.org/10.1016/j.scitotenv.2019.134661
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Fig. 3. Importance (mean ± standard error; n = 10, i.e. 10 repetitions) of six abiotic
factors used to develop the predictive models of sharpbelly Hemiculter leucisculus.
Seven different modeling algorithms (GLM, GBM, GAM, FDA, ANN, MARS, and RF)
were opted to calculate this metrics. Abbreviations of these abiotic factors are
presented in Table 1.
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played a less pivotal role (Fig. 3). The shapes of the response curves
of different algorithms for the two most important variables were
similar to each other (Fig. 4A, B). More specifically, the occurrence
probability of H. leucisculus showed a positive logistic response
and a single-valley curve to HII and BIO18, respectively (Fig. 4A,
B). In contrast, there did not exist a consensus cross-algorithm pat-
tern between the occurrence probability ofH. leucisculus and BIO15,
as well as BIO8 (Fig. 4C, D).
3.3. Spatial patterns of global habitat-suitability and invasion risk

Almost all invasive and native presence records of H. leucisculus
were successfully projected by our ensemble model (Fig. 5A). Out-
puts from this model also suggested that H. leucisculus could
occupy a broader extent than it has been documented across the
Fig. 4. Mean (n = 10, i.e. 10 repetitions) response curves of the occurrence probability of
determined by seven different modeling algorithms (GLM, GBM, GAM, FDA, ANN, MARS

Please cite this article as: X. Dong, T. Ju, G. Grenouillet et al., Spatial pattern a
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world. More specifically, several areas of Midwest, West Coast,
and Florida of USA, Mexico, Central America, east-central part
and northwest coast of South America, southern part and north-
west coast of Africa, Central, Western, and Southern Europe, South-
east Asia, southern foot of the Himalayas, east coast of Australia
and southeast of Papua New Guinea showed higher habitat-
suitability for H. leucisculus though no relevant records have been
made yet in these regions (Fig. 5A). While taking introduction like-
lihood into account (i.e. considering the invasion of H. leucisculus as
a process) rather than just habitat-suitability, we found that some
portions of Midwest and Florida of USA, Mexico, Honduras, Guate-
mala, Salvador, Cuba, Jamaica, Dominica, southeastern Brazil, Ecua-
dor, Madagascar, Central, Western, and Southern Europe, Turkey,
Southeast Asia, southern foot of the Himalayas as well as Japan
possessed higher risk of being invaded by H. leucisculus in the
future (Fig. 5B). In contrast, although Haiti, Nicaragua, Costa Rica,
Panama, Central South America, southern part and northwest coast
of Africa, Southwestern Asia (most territories of eastern Iran,
Afghanistan and northwestern Pakistan), southeast of Papua New
Guinea as well as east coast of Australia presented higher
habitat-suitability, these regions harbored lower risk of being
invaded by H. leucisculus in the future (Fig. 5B).
4. Discussion

4.1. Spatial patterns of global habitat-suitability and invasion risk

In our study, the global habitat-suitability of invasive H. leucis-
culus was projected by using an ensemble forecasting model since
such a model possessed the strongest generalization ability and,
consequently is expected to provide the most precise localization
of the regions which are suitable for this species. The results indi-
cated that our ensemble model not only successfully identified
almost all sharpbelly’s presence records used in this study and
those suitable areas in the conterminous USA (i.e. northeast of
the Mississippi river basin, West Coast, and Florida Peninsula)
anticipated by two previous studies (Chen, 2008; Sanders et al.,
2014), but also mined a considerable amount of new habitats suit-
sharpbelly Hemiculter leucisculus in respect of the first four important abiotic factors
, and RF). Abbreviations of these abiotic factors are presented in Table 1.

nd determinants of global invasion risk of an invasive species, sharpbelly
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Fig. 5. Worldwide (A) habitat-suitability and (B) invasion risk maps of sharpbelly Hemiculter leucisculus projected by the mean-weighted Ensemble model (Enwm).
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able for H. leucisculus that have not yet been detected formerly,
such as Central America, Cuba Island, Hispaniola Island, Brazilian
Plateau, Circum-Mediterranean, as well as central and southeast-
ern Africa (including Madagascar Island). Despite this, it is partic-
ularly notable that our predictions for the conterminous USA are
apparently inconsistent with the anterior works. More specifically,
our assessment did not support the whole east or large portions of
the west of the conterminous USA were inhabitable for H. leuciscu-
lus, whereas Chen (2008) and Sanders et al. (2014) prognosticated
they were, respectively. Of course, the discrepancies in predictions
among different studies can be attributed to several reasons, for
instance, the use of different modeling algorithms (Pearson et al.,
2006; Araújo and New, 2007) and/or data sources (Steiner et al.,
2008; Poulos et al., 2012; Verbruggen et al., 2013). However, given
the current study (1) adopted an ensemble model yet both Chen
(2008) and Sanders et al. (2014) only used an individual modeling
algorithm; (2) calibrated the models with presence records from
both native and invasive ranges while Chen (2008) simply consid-
ered that from native range; (3) included more constraints which
may influence the species’ distribution than Sanders et al. (2014)
(21 versus 16); (4) assembled a larger dataset than both Chen
(2008) and Sanders et al. (2014), it is logical to conclude that our
results for the conterminous USA or even the entire world are more
accurate and reliable.

More than predicting the worldwide habitat-suitability, the
present study also created a global invasion risk map for this inva-
sive species, which differed from many previous SDMs studies.
Compared to the global habitat-suitability, the invasion risk map
generally focalizes smaller geographical ranges where both spe-
cies’ habitat-suitability and introduction likelihood are high, and
hence informs the hotspots possessing higher invasion risk
(Hulme, 2009; Fletcher et al., 2016; Banha et al., 2017). The risk
map revealed that albeit several areas were exceptions (e.g. Haiti,
Panama, and southeast of Papua New Guinea), most of the regions
inhabitable for this pest were concurrently vulnerable to being
invaded in the future, for instance, Brazilian Plateau, Southeast
Asia, and Japan where this species was first recorded recently in
Please cite this article as: X. Dong, T. Ju, G. Grenouillet et al., Spatial pattern a
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Okayama Prefecture (Nitta et al., 2017). Among all these areas with
higher invasion risk, it needs to be emphasized that our prediction
for Turkey was highly consistent with two previous assessments
for the same country (Tarkan et al., 2014; Tarkan et al., 2017),
which in turn also corroborates that our risk map has a good
performance.

4.2. Influential factors and their response curves

HII was ranked as the most relevant variable to sharpbelly’s glo-
bal invasion and all algorithms indicated that the invasion risk of
H. leucisculus exhibited a positive logistic response to HII: the
higher the level of human disturbance is, the greater the invasion
risk of H. leucisculus is, which was also observed in many other
taxa, including aquatic plants, birds, and insects (Gallardo and
Aldridge, 2013; Obenauer et al., 2017; Cardador and Blackburn,
2019). This is not surprising because on the one hand, disturbed
habitats that are commonly characterized by simplified communi-
ties, little competition or predation, and abundant organic matter,
are usually more vulnerable to invasion (Lozon and MacIsaac,
1997). On the other hand, H. leucisculus is an ecological generalist
(Chen, 2008) and has remarkable tolerance to a wide range of envi-
ronmental conditions (e.g. thermal and water pollution)
(Townsend et al., 2003; Thinh et al., 2012; Mousavi-Sabet et al.,
2019). However, by contrast, ResDam contributed the least to
sharpbelly’s invasion success although we are convinced that it
exerts a huge influence on aquatic ecosystems, possibly because
this element has been partially accounted for within HII.

Apart from human-related features, the bioclimatic variables
(BIO18, BIO15, BIO8, and BIO19) were also indispensable in assess-
ing sharpbelly’s global invasion risk. For instance, BIO18 (i.e. pre-
cipitation of warmest quarter) played a key role in determining
whether H. leucisculus can make a successful future invasion in
India. It is well known that India is under intense human distur-
bance, but our risk map showed that the invasion risk of H. leucis-
culus there is not very high. One reasonable explanation is that
BIO18, which affects species seasonal distributions (O’Donnell
nd determinants of global invasion risk of an invasive species, sharpbelly
s://doi.org/10.1016/j.scitotenv.2019.134661

https://doi.org/10.1016/j.scitotenv.2019.134661


X. Dong et al. / Science of the Total Environment xxx (xxxx) xxx 7
and Ignizio, 2012), is at a relatively low level in this country
(BIO18 = 293.74 mm). As for why a trough occurred in the response
curves of BIO18, two previous studies have provided a plausible
explanation: at least one spatial cluster of H. leucisculus, which
came from the areas where precipitation is extremely insufficient
but greatly depended on the rainfall of the warmest quarter of
the year, was entailed in our presence dataset (Stelmashchuck
and Stadnichenko, 2011; Tytar and Makarova, 2015).
4.3. Strategies to control further expansion

Numerous studies have suggested that one of the major prob-
lems caused by aquatic invasive species is that they are difficult
or impossible to be eradicated once established a viable population
in a new habitat (Williams and Meffe, 2000; Zambrano et al., 2006;
Chen, 2008). In addition, eradication tends to be cost-intensive and
can only eliminate or attenuate further harm rather than restore
the invaded systems to its pristine conditions (Myers et al.,
2000). Hence, the best way to minimize the impairments by aqua-
tic invasive species is prevention or preclusion since such a strat-
egy is eco-friendly, cheaper, and more effective (Leung et al.,
2002; Hulme, 2006; Patimar, 2007). Unquestionably, this approach
is also the first and best line to control H. leucisculus expansion. To
be specific to application-level, some targeted actions can be taken
to preclude the torrent of new introductions of this fish: (1) pro-
hibiting negligent life-release of H. leucisculus into non-native habi-
tats; (2) checking all transported fish seed to exclude possible
mingled H. leucisculus; (3) educating related practitioners, includ-
ing fish-farm staff, fishermen, aquarists, and even anglers, to
enhance their awareness of the jeopardizing of H. leucisculus inva-
sion; (4) abstaining H. leucisculus escapes from aquaculture facili-
ties; (5) disposing ships’ ballast water in accordance with some
widely recognized international standards, such as D2, G2, and
G8 (Basurko and Mesbahi, 2011); and (6) reducing human distur-
bance on those susceptible aquatic ecosystems (i.e. areas with high
invasion risk forecasted by the present study). Beyond that, long-
term prudent monitoring on those susceptible water bodies is also
very necessary as this redounds to early detecting new introduc-
tions and taking timely remedial measures when those aforemen-
tioned actions fail. According to Reshetnikov and Ficetola (2011),
once the preventive measures mentioned-above don’t work, the
rest of what we can do mainly includes: (1) isolating public from
invaded water bodies; (2) severing the links between invaded
and uninvaded water bodies (e.g. establishing electrical barriers);
and (3) eradicating new invasive populations by releasing local
predatory fish or by using piscicides. For (3), a successful example
is known in some carp aquaculture ponds in Iran, where 13
unwanted fishes including H. leucisculus were almost completely
(88.9%) eliminated by releasing apex predator northern pike Esox
lucius (Linneaus, 1758) (Khaval et al., 2010). Despite this positive
experience, reliable and practical methods for preventing invasive
fishes from large-scale geographical expansion are still quite lack-
ing at the moment. This means that more water bodies will be
probably colonized by H. leucisculus before new more effective
strategies are found and implemented.
5. Conclusion

In this paper, we used a set of SDMs (including an ensemble
model) to forecast the worldwide habitat-suitability and its deter-
minants of an avowed invasive species sharpbelly, and then over-
laid the habitat-suitability with a proxy for this fish’s introduction
likelihood (entailing propagule pressure and dispersal constraints)
to create a global invasion risk map. The results reveal that the
ensemble model has the best performance in predicting sharp-
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belly’s habitat-suitability and HII is the most-influential factor that
favors the future invasion of exotic sharpbelly. In addition, the risk
screening of this invader also suggests that there exist some
regions in all continents except Antarctica which are at medium-
high future invasion risk. Nonetheless, reliable prevention and
management strategies for this pest are currently absent. In light
of this, a series of targeted measures were advised to stem or slow
this species’ further expansion. Incidentally, as an added value, the
approach used in this work might be general enough to be trans-
ferred to other invasive species’ risk assessment, especially for
those whose dispersal capacities are very limited.
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