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Abstract
Aim: Understanding how species assemble into assemblages and identifying the de-
terminants of assembly processes remains a key challenge in ecology. Within assem-
blages, functional trait dispersion can be used to infer assembly processes, but this 
inference could depend on the trait considered. Here, using both single and multiple 
trait‐based approaches, we analysed dispersion patterns for alpha (i.e., related to 
niche partitioning) and beta (i.e., related to environmental tolerance) traits in fresh-
water fish assemblages and characterized how trait dispersion patterns vary along 
environmental gradients at large spatial scale.
Location: Western Palaearctic, 290 river catchments.
Time period: Contemporary.
Major taxa studied: Freshwater fish.
Methods: Based on freshwater fish occurrence records in 290 European river catch-
ments, we computed dispersion indices (mean pairwise distance) using standardized 
effect sizes for each single trait and multiple traits. We then used linear models in-
cluding climatic, geo‐morphological, biotic and human‐related factors to determine 
the key drivers shaping freshwater fish dispersion patterns across Europe.
Results: We highlighted spatial variation in trait dispersion, with both underdisper-
sion and overdispersion simultaneously observed for a given trait, but also distinct 
patterns of trait dispersion, even within beta and alpha traits. We provided evidence 
that elevation range and current and past climatic conditions mainly structured trait 
dispersion patterns. Finally, our results revealed that spatial patterns in trait disper-
sion based on multiple traits were less pronounced than those based on individual 
traits.
Main conclusions: Our results highlighted that traits showed different spatial and 
environmental patterns, reflecting different ecological patterns. This could lead to 
potential problems when using functional indices computed on multiple traits and 
challenges their relevance to describe diversity patterns and to infer the assembly 
processes shaping community structure.

K E Y W O R D S

diversity, environmental filtering, environmental gradients, European catchments, functional 
traits, mean pairwise distance, stream fish assemblages, trait dispersion

mailto:
https://orcid.org/0000-0003-4965-1915
https://orcid.org/0000-0002-4448-2836
mailto:cote.jessica33@gmail.com


     |  827CÔTE ET al.

1  |  INTRODUC TION

The functional facet of diversity aims to answer to the need for an 
integrative view (Díaz & Cabido, 2001; Petchey & Gaston, 2002; 
Tilman et al., 1997) by taking into account species characteristics 
(Violle et al., 2007) in the measurements. Several components of 
functional diversity can be used to describe assemblage structure 
(Mason, Mouillot, Lee, & Wilson, 2005; Mouchet, Villéger, Mason, 
& Mouillot, 2010), including functional trait dispersion (e.g., Ingram 
& Shurin, 2009). Functional dispersion refers to the variability of 
traits within a community. Underdispersion for one trait suggests 
similar values across species within a given sample (i.e., low vari-
ability), whereas overdispersion indicates the opposite pattern (i.e., 
high variability around mean trait values). Trait dispersion is regu-
larly studied using indices based on several traits (e.g., de Bello et 
al., 2013; de Souza Queiroz, Da Silva, & de Cerqueira Rossa‐Feres, 
2015; Schleuter et al., 2012). However, traits might show different 
responses to environmental or spatial gradients, and one might blur 
the detected patterns by combining all traits in a single measure of 
diversity (Tsianou & Kallimanis, 2016).

According to Lopez et al. (2016), a dichotomy based on the func-
tion they support has been proposed to classify functional traits as 
alpha or beta traits according to the expected main determinant of 
their diversity within community. Traits related to behaviour, small‐
scale habitat preferences or resource use and thus to the coexis-
tence of species within the assemblage are defined as alpha traits, 
whereas traits linked to environmental requirements and tolerance 
along environmental gradients are defined as beta traits (Kraft et al., 
2015; Lopez et al., 2016; Mayfield & Levine, 2010). Consequently, 
overdispersion is expected on alpha traits, because processes such 
as competition and niche differentiation might occur, whereas un-
derdispersion is expected on beta traits, on which environmental fil-
tering can act (Ackerly & Cornwell, 2007; Lopez et al., 2016). In this 
context, in order to infer assembly processes more precisely, previ-
ous studies have recommended that functional diversity for alpha 
and beta traits should be analysed separately, because they can be 
defined as different axes of species niche (Kraft et al., 2015; Lopez 
et al., 2016; Mayfield & Levine., 2010) and because this provides a 
framework to disentangle the influence of competition and environ-
mental filtering on multivariate diversity patterns.

Patterns of dispersion of traits vary along environmental gra-
dients partly because alpha and beta traits respond to different 
environmental filters (Lopez et al., 2016). For instance, Katabuchi, 
Kurokawa, Davies, Tan, and Nakashizuka (2012) showed that soil 
characteristics influenced dispersion patterns of forest tree com-
munities. Likewise, Vogt, Peres‐Neto, and Beisner (2013) found that 
environmental characteristics of lakes had an influence on the trait 
diversity of zooplankton communities. Climate (past and present) is 
known to be a key factor determining spatial patterns of trait disper-
sion (e.g., Ordonez & Svenning, 2015, 2016; Shiono et al., 2015), and 
the direction of this influence is likely to vary according to the trait 
considered. For instance, Swenson et al. (2012) found strong mean 
temperature effects on trait dispersion, either positive or negative, 

and low trait dispersion was mainly observed in environments char-
acterized by a strong climate seasonality. Dispersion patterns of beta 
traits (i.e., related to environmental requirements) are more likely to 
vary according to climatic conditions than patterns of alpha traits 
(i.e., related to resource use).

Human‐related factors are also known to play a major role in pat-
terns of trait dispersion, although the directionality of this influence 
is still not clear. For instance, Forrest, Thorp, Kremen, and Williams 
(2015) have shown that land use, especially conventional intensive 
agriculture, decreased trait dispersion of bee communities. On the 
contrary, degraded systems present higher trait dispersion than un‐
impacted bird communities (Bregman et al., 2015). Thus, one might 
expect that human‐related land use is likely to affect trait dispersion, 
especially the dispersion patterns of beta traits, although the inten-
sity of the influence might depend on the type of disturbance and on 
the trait considered (Schellenberger Costa et al., 2017).

Another component of human‐related factors is non‐native spe-
cies (NNS), which are now recognized as an important determinant in 
community reorganization (Vitousek, D’Antonio, Loope, Rejmanek, 
& Westbrooks, 1997). The impact of NNS on trait dispersion may 
depend on the trait considered, but also on competitive ability and 
niche similarity. In particular, NNS might have similar environmental 
requirements to native species (Diez, Sullivan, Hulme, Edwards, & 
Duncan, 2008; Thuiller et al., 2010), and in that case, their establish-
ment would not increase beta trait dispersion. On the contrary, NNS 
should have different alpha traits to avoid niche overlapping with na-
tive species (Schaefer, Hardy, Silva, Barraclough, & Savolainen, 2011; 
Strauß et al., 2016), leading to an increase in alpha trait dispersion. 
Overall, the impacts of human‐related factors such as land use and 
NNS appear complex and hard to predict, because the direction and 
the intensity might depend of the type of factor and on the type of 
trait considered.

In this study, we decomposed the known patterns of multivariate 
functional diversity for European fish assemblages and determined 
the environmental drivers that are important for each trait individ-
ually. While few studies were interested in dispersion in freshwater 
fish assemblages, they mainly used multivariate approaches (e.g., 
Dolbeth, Vendel, Pessanha, & Patricio, 2016; Schleuter et al., 2012). 
For instance, Schleuter et al. (2012) used a multivariate approach to 
characterize spatial patterns in functional diversity across Europe. 
They suggested that geographical isolation but also harsh environ-
mental conditions (especially extreme temperatures) could lead to 
low functional divergence. However, the approach used by the au-
thors (i.e., using multivariate indices) did not allow them to deter-
mine whether the global observed pattern was attributable to either 
the same traits that were underdispersed simultaneously at low and 
high temperatures or to different traits that were underdispersed at 
one side of the thermal gradient. Moreover, as far as we know, none 
of these studies aimed to understand the determinants of several 
individual trait dispersion patterns at a large scale.

The aim of the present study was fourfold. First, we described 
dispersion patterns of five functional traits, including both alpha 
(e.g., trophic position) and beta (e.g., locomotion‐related and 
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reproductive) traits (Astor et al., 2014; Troia & Gido, 2015). Second, 
we compared single and multiple trait approaches in the inference 
of spatial patterns of trait dispersion. Third, we assessed to what 
extent NNS influenced the observed patterns. Fourth, we identi-
fied the main determinants (i.e., climatic, land use and NNS) of these 
large‐scale patterns of trait dispersion.

2  | MATERIAL S AND METHODS

2.1 | Fish data and species traits

Freshwater fish occurrence records in 290 European river catch-
ments were compiled from published data on species lists at the 
river catchment scale (Tedesco et al., 2017). Only river catchments 
with at least five fish species were retained for analyses. We used 
five quantitative functional traits linked to feeding [trophic position 
(TP)], life‐history strategies [fecundity (number of eggs spawned at 
each spawning) and egg diameter] and dispersal ability (body length 
and swimming factor, determined by the ratio of minimal depth of 
the caudal peduncle to the maximal caudal fin depth; Lamouroux, 
Poff, & Angermeier, 2002).

Alpha and beta traits have been defined according to the frame-
work proposed by Lopez et al. (2016) and other studies (Kraft et al., 
2015; Mayfield & Levine, 2010) (Table 1). We classified trophic po-
sition and fecundity as alpha traits, because trophic position is re-
lated to resource partitioning at the local scale (Lopez et al., 2016; 
Pease, González‐Díaz, Rodiles‐Hernández, & Winemiller, 2012; Saito, 
Cianciaruso, Siqueira, Fonseca‐Gessner, & Pavoine, 2016) and fecun-
dity could be related to competitive ability and, consequently, resource 
partitioning (Sibbing & Nagelkerke, 2001). On the contrary, we classi-
fied egg size and swimming factor as beta traits. Indeed, in freshwater 
fish, some studies showed a strong relationship between these traits 
and environmental conditions, especially hydrological and thermal 
conditions (Pease et al., 2012; Tedesco et al., 2008). Moreover, hydro-
dynamic morphological ratios are related to locomotion and habitat 
use and are strongly driven by environmental conditions (Lamouroux 
et al., 2002; Sagnes & Statzner, 2009). Body length was defined as 
both an alpha and a beta trait, because some studies showed that it 
could be implicated in resource partitioning (feeding) but could also 
be driven by environmental factors (habitat use, locomotion) (Pease et 

al., 2012; Sibbing & Nagelkerke, 2001). Trait values were taken from 
the literature (Kottelat & Freyhof, 2007), FishBase (Froese & Pauly, 
2018) and derived from one picture per species from these two ref-
erences for swimming factor. The completeness of trait information 
collected from the literature varied from 40% to 97% among traits. 
Consequently, we used from 285 to 290 river catchments and a pool 
from 143 to 355 and from 176 to 402 species, depending on the trait 
considered, for native and complete assemblages, respectively. We 
assessed correlations among species traits using pairwise Spearman’s 
correlation tests. Apart from a marked positive correlation between 
body length and fecundity (ρ = .80, p < .001), all other correlations 
were < .35 (Supporting Information Appendix S1).

2.2 | River catchment descriptors

We described each river catchment in terms of climatic, geo‐mor-
phological and anthropogenic features. Four climatic variables were 
extracted from the WorldClim database (Hijmans, Cameron, Parra, 
Jones, & Jarvis, 2005): mean annual temperature (TEMP), total an-
nual precipitation (PREC), seasonality of temperature (TSEAS) and 
seasonality of precipitation (PSEAS). We extracted the percentage of 
surface covered by ice during the Last Glacial Maximum (LGM) from 
Ehlers, Gibbard, and Hughes (2011). Regarding to geo‐morphological 
factors, the area of river catchment (AREA) was extracted from the 
CCM2 database (Vogt, Soille, Colombo, Paracchini, & de Jager, 2007) 
and the elevation range (ELE) from the HYDRO1k database avail-
able from the U.S. Geological Survey. Anthropogenic features were 
described using variables extracted from the Global Land Cover 
Network (GLCN) database (artificial areas, cultural areas, forest 
and shrub–herb areas), and the density of population was extracted 
from the HYDE 3.0 database for each catchment (Klein Goldewijk, 
Beusen, Drecht, & Vos, 2011). To reduce the multidimensionality 
of anthropogenic variables, we performed a principal component 
analysis on land use and population density variables and kept the 
first axis (accounting for 38.4% of the total variability and showing a 
strong positive correlation with the density of population, artificial 
and cultural areas) to obtain a synthetic variable (HUM) describing 
the intensity of human activities. Then, we also quantified the spe-
cies richness (SR) and the proportion of NNS for each European river 
catchment using Kottelat & Freyhof (2007).

TA B L E  1   Description of the five studied traits

Trait Functional category Filter Type of trait Expected pattern References

Trophic position Feeding Niche partitioning α Overdispersion Saito et al. (2016) and 
Lopez et al. (2016)

Fecundity Life history strategy Niche partitioning α Overdispersion Sibbing and Nagelkerke 
(2001)

Body length Feeding Niche partitioning α Overdispersion Pease et al. (2012)

Life‐history strategy, 
habitat use, 
locomotion

Environment β Underdispersion Pease et al. (2012), Lopez 
et al. (2016)

Egg size Life‐history strategy Environment β Underdispersion Pease et al. (2012)

Swimming factor Locomotion Environment β Underdispersion Pease et al. (2012)
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2.3 | Trait dispersion and null models

To quantify trait dispersion, we computed mean pairwise distance 
(MPD; Webb, Ackerly, McPeek, & Donoghue, 2002) based on Gower 
distance matrices (Gower, 1971) for each trait separately and then 
based on all traits (i.e., multivariate MPD). Given that NNS can influ-
ence the patterns of trait dispersion, we carried out the analysis once 
while considering all co‐occurring species in assemblages (including 
NNS; i.e., complete assemblages) and once while based only on na-
tive co‐occurring species (without NNS; i.e., native assemblages). We 
performed null models to obtain unbiased indices that are compara-
ble across studies and allow the testing of under‐ and overdispersion. 
Null models have been used following Leprieur, Beauchard, Hugueny, 
Grenouillet, and Brosse (2008) in order to be comparable with simi-
lar studies (Schleuter et al., 2012; Villéger, Blanchet, Beauchard, 
Oberdorff, & Brosse, 2011). In particular, we randomized 999 times 
the trait matrix corresponding to native or complete conditions 
(without and including NNS, respectively) and computed MPD for 
each randomization. Next, we computed standardized effect sizes 
(SES) of MPD for each trait and each catchment as follows: SES = 
(obs − mean(rand))/SD(rand), where obs is the observed MPD and rand 
is the vector of 999 random MPD. SES of MPD are the opposite of the 
Nearest Relative Index (NRI), proposed by Webb et al. (2002). Positive 
values of SES indicate that species present more different trait val-
ues than those expected under a random hypothesis, which suggests 
overdispersion for the considered trait, whereas negative SES values 
indicate that species present more similar trait values than those ex-
pected under a random hypothesis, which suggests underdispersion 
for this trait. To determine whether an SES differed significantly from 
the random expectation, we used the distribution of the 999 random 
MPD for each catchment. An observed MPD higher than the 97.5th 
percentile or lower than the 2.5th percentile of this distribution was 
significant (i.e., α = .05). A positive coefficient indicates that higher val-
ues of SES (i.e., stronger overdispersion or weaker underdispersion) 
are associated with higher values of the environmental variable. On 
the contrary, a negative relationship indicates that higher values of 
SES are associated with lower values of the environmental variable. 
Regarding second‐order terms, a positive estimate indicates a convex 
response curve (i.e., higher SES values are observed at both upper and 
lower limits of the environmental gradient), whereas a negative esti-
mate indicates a concave curve (i.e., lower SES values are observed at 
both extremes of the environmental gradient).

2.4 | Robustness of MPD indices to missing trait data

Given that functional diversity indices are sensitive to missing trait 
data (Májeková et al., 2016; Pakeman, 2014), we assessed the com-
pleteness of the species trait data and its impact on the spatial 
patterns of trait dispersion. To address potential geographical and 
phylogenetic bias in the trait data, we mapped, for each trait, the pro-
portion of missing trait data per catchment and plotted the available 
versus missing data along the phylogeny (Supporting Information 
Appendix S2, Figures S2.1 and S2.2). The phylogenetic signal was 
estimated for each trait by the D value, which quantifies the sum of 

changes in estimated nodal values of the presence–absence of miss-
ing data along the edge of the time‐calibrated molecular phylogeny 
from Rabosky et al. (2013), and was tested using the null distribution 
of D values obtained by randomly shuffling the tips of the phylogeny 
1,000 times (Fritz & Purvis, 2010).

To address the robustness of MPD indices to missing trait data, 
we used the framework proposed by Pakeman (2014) and simu-
lated different degrees of trait data completeness by progressively 
removing trait information. Given that the proportion of missing 
trait data per species was highly correlated with species occurrence 
(Supporting Information Appendix S2, Figure S2.3), we analysed 
the impact of progressive removal of the traits of the rarer spe-
cies on the computation of the MPD indices (Májeková et al., 2016; 
Pakeman, 2014). This scenario was applied to the most complete 
trait (i.e., swimming factor, completeness = 97%), and MPD values 
were expressed for each catchment as a proportion of the metric 
value at the full species complement.

Finally, we assessed the impact of missing data on spatial pat-
terns of trait dispersion by computing the rank correlation between 
original MPD values and values obtained at each step of the removal 
procedure.

2.5 | Statistical analyses

To determine to what extent trait dispersion was influenced by 
the consideration of NNS, we used Spearman correlation tests be-
tween native and complete SES. Next, to identify the potential 
drivers of the observed spatial patterns, we performed a multi‐
model inference procedure with each measure of trait dispersion 
separately as the response variable. We considered all possi-
ble multi‐predictor models (n = 1,585 for complete assemblages 
and n = 637 for native assemblages) that included five terms or 
fewer, including second‐order terms (i.e., quadratic) (Supporting 
Information Appendix S3). Only mean annual temperature and an-
nual precipitation were included as second‐order terms, because 
humped‐shaped relationships have been shown between these 
variables and diversity (Schleuter et al., 2012). We used general-
ized least squares (GLS) models in order to take into account spa-
tial autocorrelation. The area and elevation were ln‐transformed, 
and the predictors were transformed to z‐scores (i.e., normalized) 
to standardize their slope coefficients, and pseudo‐R2 values were 
calculated for each model (Nagelkerke, 1991). We kept the models 
for which the difference between their Akaike information crite-
rion (AIC) from the lowest AIC was less than or equal to two.

From the selected models (Supporting Information Appendix 
S3), we calculated model‐averaged slopes based on the AIC 
weights of each model (Burnham & Anderson, 2002) and the as-
sociated 95% confidence intervals (Johnson & Omland, 2004). We 
checked for spatial autocorrelation using Moran’s I (Fan & Myint, 
2014), which ranged between .09 and .21 (Table 3). We chose the 
structure of spatial autocorrelation by fitting semi‐variograms 
and took into account the spatial autocorrelation in all the mod-
els (Table 3). Moreover, we checked for multicollinearity between 
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explanatory variables (variance inflation factors all lower than six; 
Zuur, Ieno, & Smith, 2007).

All statistical analyses were performed with R software version 
3.2.1 (R Core Team, 2017). Models were performed with the nlme 
package, and the autocorrelation structure was assessed with the 
gstat package. The package MuMIn was used for the multi‐model in-
ference procedure.

3  | RESULTS

Overall, the completeness of the species trait data varied among 
river catchments from 47.7 to 96.7% [median = 90.5, interquartile 
range (IQR) = (81.4, 94.3)] and showed a strongly right‐skewed dis-
tribution for each trait, with the lowest values mainly observed in 
south‐eastern Europe (Supporting Information Appendix S2, Figure 
S2.1). Completeness varied among fish families, with lower values for 
Cobitidae and Nemacheilidae, resulting in significant phylogenetic 
non‐randomness of missing data observed for four of the traits (D 
values ranging from .53 to .85, p < .001), except swimming factor, for 
which missing values were randomly distributed along the phylogeny 
(D = .92, p = .293). However, fish species with at least one missing 
trait value occurred in very few river basins [median = 2, IQR = (1, 4)], 
whereas species with complete trait data represented 78% of the oc-
currence records (Supporting Information Appendix S2, Figure S2.3). 
Consequently, when analysing the impact of progressive removal of 

the traits of the rarer species, most of the MPD indices showed little 
change across all the river basins (mean absolute deviation of 4.8% 
for 80% of the species removed). Consequently, the correlation be-
tween original MPD values and values obtained during the removal 
procedure revealed very resilient spatial patterns in trait disper-
sion (ρ = .96 for 80% of species removed; Supporting Information 
Appendix S2, Figure S2.4).

3.1 | Spatial patterns of trait dispersion

Regarding trophic position, underdispersion was mainly observed in 
Europe, except in small catchments around Mediterranean Sea (espe-
cially in Italy, Greece and Turkey) where overdispersion was noticed 
(Figure 1; Table 2). Overdispersion was the main observed pattern re-
garding body length, although few catchments presented significant 
negative SES values (Table 2). Likewise, we observed strong overd-
ispersion for fecundity, with an increase of overdispersion from the 
north to the south of Europe (Figure 1; Table 2). For egg diameter, 
underdispersion was mainly observed in large catchments (Table 2), 
but a north–south gradient was observed, with overdispersion re-
ported in catchments from northern Europe (Figure 1). For swimming 
factor, except for some catchments, we observed a south–north gra-
dient of dispersion, with overdispersion near the Mediterranean Sea 
and underdispersion in the northern continental areas (Figure 1). 
When considering all the traits together, overdispersion seemed to 

F I G U R E  1   Spatial patterns of standardized effect sizes (SES) of mean pairwise distances calculated on native assemblages (i.e., native 
species only) for body length (BL), egg diameter (ED), fecundity (FE), swimming factor (SW), trophic position (TP) and all traits 
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be observed more often than underdispersion (Table 2), although no 
clear spatial pattern was apparent (Figure 1).

Standardized effect sizes calculated on native and complete as-
semblages were significantly correlated for all traits (R2 ranging from 
.78 to .88, all p < .001; Figure 2). Nevertheless, NNS led to a global 
decrease of SES values for fecundity and swimming factor, whereas 
we observed an increase of SES values for egg diameter (Figure 2). 
No such change in SES values when considering NNS was observed 
for body length and trophic position, or for dispersion computed 
on all traits (Figure 2). Overall, changes in dispersion patterns ob-
served when comparing native and complete assemblages were not 
homogeneously distributed across Europe (Supporting Information 
Appendix S4). For instance, concerning fecundity, we observed a 
clear east–west gradient, with a strong decrease of SES values with 
NNS in the western part of Europe and a weak increase of SES values 
in the eastern part of Europe. Regarding swimming factor, we ob-
served a global decrease in western Europe of SES after integrating 
NNS, whereas no variation in SES for the eastern part of Europe was 
observed. Finally, for the index calculated on all traits, the results 
showed an increase of SES values in southern Europe and a decrease 
of SES values in north‐eastern Europe with the introduction of NNS.

3.2 | Effects of environmental drivers on the 
patterns of trait dispersion

Regarding native assemblages, GLS models showed significant 
positive effects of the area, the mean annual temperature and its 
quadratic term, the precipitation seasonality and the elevation on 
fecundity values, whereas a negative effect of the temperature 
seasonality was observed (Table 3). Concerning egg diameter, the 
results showed a negative effect of the annual mean temperature, 
the temperature seasonality and the species richness, and we ob-
served a switch from overdispersion to underdispersion along the 
annual mean temperature and the temperature seasonality gradi-
ents for both complete and native assemblages (Table 3; Figure 3). 
A positive effect of the LGM and of annual precipitation on dis-
persion of egg diameter values was observed (Table 3). For body 
length, a negative effect of the temperature seasonality and a posi-
tive effect of the species richness, the LGM and elevation were no-
ticed, whereas swimming factor was positively influenced by the 
annual mean temperature and its quadratic term and by elevation 

and negatively by the area. Finally, we observed a positive effect 
of the precipitation seasonality for trophic position and a negative 
effect of the quadratic term of temperature. For index of all traits, 
we observed a negative effect of the species richness and positive 
effects of the annual mean temperature, the LGM and elevation.

Concerning the complete assemblages including NNS, we observed 
similar results to those found on assemblages with native species only, 
although the signal of some drivers was blurred. No effect of human 
impact was observed for dispersion computed on all traits. Finally, the 
rate of NNS had no influence on dispersion of traits (Table 3; Figure 3).

4  | DISCUSSION

Our study showed evidence of strong spatial variation in trait dispersion. 
We especially highlighted clear differences in patterns of trait dispersion 
within each type of trait (alpha and beta), suggesting that expectations 
linked to alpha and beta niches are not observed for all the traits. The 
contrasting patterns observed in trait dispersion were partly explained 
by different geo‐morphological and climatic gradients. Our study sug-
gests that univariate dispersion indices should be considered as a 
complementary tool to multivariate dispersion indices computed over 
several traits in studies assessing trait‐based assembly rules. Moreover, 
we also showed that NNS strongly modify the dispersion patterns for al-
most all traits in a different direction, depending on the trait considered.

4.1 | Spatial patterns in trait dispersion

We found strong spatial patterns of dispersion for studied traits, 
especially regarding life‐history traits (egg diameter and fecundity) 
and dispersal‐related morphology (swimming factor), in contrast to 
previous studies (Šímová et al., 2015). At a more local scale, Ingram 
and Shurin (2009) found a decrease in dispersion, regarding several 
morphological and diet traits with the latitude.

We expected alpha traits (i.e., those linked to resource use) to be 
overdispersed, because they are linked to the coexistence of spe-
cies within the assemblage, whereas beta traits (i.e., those linked to 
environmental requirements) were expected to be underdispersed, 
because these traits are likely to be filtered by the environment 
(Ackerly & Cornwell, 2007; Lopez et al., 2016). Our results did not 
corroborate this hypothesis for all the traits, contrary to what was 
found in snails at a local scale (Astor et al., 2014), highlighting a 

TA B L E  2   Number of river catchments for which positive (i.e., overdispersed) and negative (i.e., underdispersed) values of standardized 
effect sizes (SES) of the trait dispersion index was observed in body length, egg diameter, fecundity, swimming factor, trophic position and 
all traits

α Both β

Trophic position Fecundity Body length Egg diameter Swimming factor All traits

Native Overdispersed 54 (1) 248 (50) 110 (7) 106 (7) 194 (26) 239 (22)

Underdispersed 205 (11) 8 (0) 147 (0) 157 (16) 83 (3) 51 (0)

Complete Overdispersed 80 (1) 278 (46) 121 (4) 154 (9) 164 (12) 240 (12)

Underdispersed 207 (8) 9 (0) 167 (0) 131 (7) 126 (4) 50 (0)

Note.. Standardized effect sizes were computed on both native and complete assemblages, and the percentages of significant (p < .05) values are given 
in parentheses.
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potential effect of the spatial scale at which studies are conducted. 
Astor et al. (2014) found strong underdispersion in traits driven 
by environmental filtering, whereas they did not show evidence 
of overdispersion for traits linked to diet or body size, which is in 
agreement with what is currently expected (Lopez et al., 2016). In 
our study, overdispersion was mainly observed for the fecundity 
trait in almost every river catchment across Europe, whereas un-
derdispersion was mainly noticed for egg diameter, trophic position 
and swimming factor, traits from both alpha and beta niches.

Our results are not in agreement with those found by Schleuter 
et al. (2012). They found evidence of a north–south gradient of 
functional dispersion, with the highest values in central Europe and 
the lowest values in the Balkans and Mediterranean areas. On the 
contrary, in our study, we found high values of dispersion for the 
multi‐trait index for basins located in the Balkans and Mediterranean 
areas. This discrepancy between the two studies might be attrib-
utable to the choice of functional traits, mainly morphological for 
Schleuter et al. (2012), and/or of the index of divergence used.

Our results suggest that patterns of dispersion are not easily 
generalizable at the trait level, even among alpha and beta types 
of traits. This result highlights the fact that separating alpha and 
beta traits, as recommended in previous studies (Lopez et al., 
2016), is important but not sufficient in the inference of patterns 
of dispersion and that the spatial variation of traits within each 

category should be taken into account in future studies. Moreover, 
such distinction between different axes of species niche does not 
take into account the fact that traits can be implied simultaneously 
in both categories. For instance, pleiotropic effects (i.e., multiple 
functions for a trait) of a trait that may be related to both species 
coexistence and tolerance along large environmental gradients 
could explain why we observed both underdispersion and overdis-
persion in different areas for a given category.

4.2 | Abiotic and biotic determinants of 
trait dispersion

Although the determinants of trait dispersion were trait depend-
ent, our results highlighted the importance of elevation range and 
both present and past climatic conditions in structuring trait disper-
sion patterns. Among geo‐morphological factors, elevation range 
seemed greatly to influence the patterns of dispersion for all beta 
and alpha traits. We observed an increase of trait dispersion with 
elevation range, a surrogate of habitat diversity in river catchments. 
Previous studies have already highlighted the importance of the el-
evation gradient on diversity patterns (e.g., Bahram, Polme, Koljalg, 
Zarre, & Tedersoo, 2012; Frenzel, Everaars, & Schweiger, 2016; 
García‐López, Micó, & Galante, 2012; Matono, Bernardo, Costa, & 
Ilheu, 2014; Melo, Rangel, & Diniz‐Filho, 2009) and mean values of 

F I G U R E  2   Correlations between trait dispersion [standardized effect sizes (SES)] calculated on native and complete assemblages for 
body length (BL), egg diameter (ED), fecundity (FE), swimming factor (SW), trophic position (TP) and all traits
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F I G U R E  3   Relationship between trait dispersion and each environmental driver (normalized). Black and grey lines refer to native 
and complete assemblages, respectively, drawn from model coefficients computed in Table 3. The horizontal line corresponds to y = 0. 
Abbreviations are as in Table 3
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traits (Bässler et al., 2016; de Bello et al., 2013), but there are few 
studies on the dispersion of these traits (de Bello et al., 2013).

Regarding climatic conditions, our results highlighted the impor-
tance of temperature mean and seasonality but also precipitation 
seasonality in structuring trait dispersion patterns. An increase of 
dispersion with mean temperature was observed for the alpha and 
beta traits fecundity and trophic position, respectively, whereas a 
decrease was observed for egg size. Overall, a negative relation-
ship between seasonality of temperature and dispersion of traits 
was noticed, whereas a positive relationship was observed between 
seasonality of precipitation and dispersion of traits, except for egg 
size, for which the relationship was negative. These results suggest 
underdispersion in thermally unstable environments and overdis-
persion in hydrologically unstable environments, except for egg size, 
where underdispersion is predominant. Environmental stability ap-
pears to be a key feature influencing patterns of trait dispersion for 
fish species (Tedesco et al., 2008) but also for other groups (e.g., 
Brendonck, Jocqué, Tuytens, Timms, & Vanschoenwinkel, 2014). 
These results are in agreement with one previous study on plants, 
which provided evidence for either a positive or a negative influence 
of temperature seasonality on dispersion of traits, depending on the 
trait considered (Shiono et al., 2015).

Contrary to our expectations, both over‐ and underdispersion 
could occur in climatically unstable environments. In such environ-
ments, overdispersion might occur because several strategies enable 
organisms to cope with important climatic variations. However, un-
derdispersion might also be observed because several species can 
select a unique optimal strategy in order to respond to one type of 
pressure. Regarding the climatic history, past climatic events such as 
glaciation events might lead to mass extinctions and consequently 
have a negative impact on diversity (Oberdorff, Hugueny, & Guegan, 
1997; Tedesco, Oberdorff, Lasso, Zapata, & Hugueny, 2005) by de-
creasing functional richness and functional evenness but increasing 
functional dispersion (Schleuter et al., 2012). Our results are in agree-
ment with this hypothesis, because an increase in dispersion with the 
percentage of ice cover during the last glaciation event was observed 
for reproductive traits, suggesting overdispersion in areas exposed 
to strong glaciation episodes and underdispersion in refuge areas.

Concerning quadratic effects, we observed significant effects 
only for temperature. For trophic position, our results support the 
harshness hypothesis, which expects lower diversity in harsh environ-
ments (Currie et al., 2004; Mason, Irz, Lanoiselée, Mouillot, & Argillier, 
2008). For this trait, we observed a concave relationship with un-
derdispersion for extreme values, suggesting habitat filtering for this 
trait. Previous study on beach food webs showed similar results, with 
underdispersion of trophic position values on beaches with extreme 
morphodynamic environments (Bergamino, Lercari, & Defeo, 2011). 
On the contrary, our results did not support the harshness hypothesis 
for fecundity and swimming factor, for which a convex relationship was 
observed (i.e., overdispersion for extreme values). This result suggests 
that niche partitioning is the main filter of community assemblages 
for these two traits and is peculiarly high at extreme temperatures. 

Nevertheless, overdispersion for these two traits was mainly observed 
in small Mediterranean river basins, which have been identified as di-
versity hotspots with strong endemism (Reyjol et al., 2007).

Although several studies showed the impact of human activities 
on functional diversity (e.g., Flynn et al., 2009, D’agata et al., 2014), 
we found no effect of human‐related land use on spatial patterns 
of trait dispersion, although this might be attributable to the coarse 
resolution of characterization of human use in the present study. 
However, regardless of the environmental conditions, the presence 
of NNS blurred the relationship between the patterns of trait dis-
persion and the environmental drivers, suggesting that NNS might 
respond differently to these drivers. Moreover, our results suggest 
that NNS impact trait dispersion patterns. Surprisingly, the effect 
of NNS did not depend on the type of trait. For instance, NNS have 
a negative influence on dispersion patterns of body length and fe-
cundity, leading to an increased redundancy between species (i.e., 
similar values of trait for both native and NNS). In contrast, egg di-
ameter (also a beta trait) showed overdispersion when several NNS 
were present in the basin, indicating that NNS are complementary to 
native species in terms of their egg diameter (i.e., different values of 
traits between native and NNS).

4.3 | Single versus multiple trait‐based approaches

Our results showed different patterns between indices calcu-
lated on single and multiple traits, suggesting that multi‐trait in-
dices can present a different view of dispersion patterns. Indeed, 
besides the fact that we found less clear patterns of dispersion 
using multiple trait‐based approaches, our results also showed 
that combining multiple traits could blur the effects of environ-
mental variables on trait dispersion patterns and mask some of 
them. Liu, Swenson, Zhang, and Ma (2013) found similar results in 
tropical tree communities, with different patterns observed be-
tween univariate and multivariate measures. Different processes 
can select different traits and, consequently, give opposing signals 
in null model analyses (Saito et al., 2016). Indeed, functional diver-
sity is a combination of the diversities of each individual trait, and 
although some of the traits considered can be restricted to a very 
narrow range of values (i.e., low diversity regarding those traits, 
or underdispersion), others could take a wide range of values (i.e., 
high diversity concerning those traits, or overdispersion). By as-
sociating all these traits in a single diversity measure, for which 
the range of values taken by co‐occurring species can be highly 
trait specific, one could (and probably would) blur spatial patterns 
of functional diversity. It now appears necessary to decompose 
the currently known spatial patterns and mechanisms structuring 
functional diversity trait by trait to deepen our understanding of 
these overall patterns and their determinants (Astor et al., 2014; 
Ingram & Shurin, 2009). In this context, our results highlight the 
usefulness of approaches addressing several functional traits sep-
arately to understand trait‐based assembly rules that could not be 
apprehended by a global measure of trait dispersion.
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4.4 | Conclusion

Our study highlighted strong among‐trait variations in spatial pat-
terns of trait dispersion. It thus appears necessary to take this in-
sight into account, because different traits within the alpha and 
beta dichotomy can present opposite patterns of dispersion, es-
pecially at a large scale, and can mask an important trait dispersion 
signal for an individual trait when using all traits together (Lopez et 
al., 2016; Saito et al., 2016). Thus, it seems essential for community 
ecologists to select traits correctly in the study of assembly pro-
cesses (Saito et al., 2016). Even if the separation of traits into alpha 
and beta traits is important to disentangle interacting processes, it 
appears not to be sufficient. Indeed, although hypotheses concern-
ing patterns of dispersion in beta and alpha traits have been for-
mulated clearly in previous studies, they can vary drastically within 
each type of trait, across space and along environmental gradients. 
Among them, climatic conditions appeared to be the most impor-
tant drivers of spatial patterns in trait dispersion. Finally, the pres-
ence of NNS can drastically modify the patterns of trait dispersion 
and blur the effects of environmental drivers on assemblage com-
position. Although the influence of NNS on functional diversity 
has been assessed recently (Toussaint et al., 2018), the present 
study suggests that change in functional dispersion related to NNS 
should be decomposed trait by trait to gain a better understanding 
of which component of functional diversity is impacted.
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