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3131 time series involving 34 fish species found in French 
rivers, we computed several metrics commonly used in syn-
chrony studies to determine whether a large-scale climatic 
factor (temperature) influenced fish population dynamics at 
the regional scale, and to test the effect of three commonly 
used TSTs (detrending, prewhitening and a combination of 
both) on these metrics. We also tested whether the influence 
of TSTs on time series and population synchrony levels was 
related to the features of the time series using both empirical 
and simulated time series. For several species, and regardless 
of the TST used, we evidenced a Moran effect on freshwater 
fish populations. However, these results were globally biased 
downward by TSTs which reduced our ability to detect sig-
nificant signals. Depending on the species and the features of 
the time series, we found that TSTs could lead to contradic-
tory results, regardless of the metric considered. Finally, we 
suggest guidelines on how population time series should be 
processed in synchrony studies.

Keywords Raw data · Prewhitening · Detrending · Fish · 
Moran effect

Introduction

Population densities in different locations often fluctuate 
synchronously over time (Buonaccorsi et al. 2001). This 

Abstract Two mechanisms have been proposed to explain 
spatial population synchrony: dispersal among populations, 
and the spatial correlation of density-independent factors (the 
“Moran effect”). To identify which of these two mechanisms 
is driving spatial population synchrony, time series transfor-
mations (TSTs) of abundance data have been used to remove 
the signature of one mechanism, and highlight the effect of 
the other. However, several issues with TSTs remain, and to 
date no consensus has emerged about how population time 
series should be handled in synchrony studies. Here, by using 
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phenomenon, known as spatial population synchrony, is 
common in animal populations ranging from parasites 
(Cattadori et al. 2005) to insects (Sutcliffe et al. 1996), 
fish (Grenouillet et al. 2001), amphibians (Trenham et al. 
2003), and birds (Koenig and Knops 1998) to mammals 
(Moran 1953). Two mechanisms have been identified as 
the principal drivers of spatial synchrony (Liebhold et al. 
2004): dispersal among spatially structured populations 
(Ranta et al. 1995), and the spatially correlated effects of 
density-independent factors that synchronize populations 
with the same linear density-dependent structure, a process 
known as the “Moran effect” (Moran 1953).

Depending on the main mechanism driving population 
synchrony, the fate of the metapopulations involved may 
vary (Hanski and Woiwod 1993). If synchrony is caused by 
dispersal, then a population that suffers severe decline can 
be rescued by adjacent populations, ensuring persistence of 
the metapopulation. In contrast, if synchrony is caused by 
environmental factors, then all populations could suffer a 
severe decline simultaneously, which could lead to metap-
opulation extinction. It is generally thought that large-scale 
synchrony is caused by environmental factors, whereas 
local synchrony is mainly driven by dispersal (Ranta et al. 
1998). However it has been shown that dispersal between 
neighboring populations could interact with local demo-
graphic processes to generate patterns of spatial synchrony 
over very large distances (Gouhier et al. 2010). Moreover, 
it is likely that these mechanisms are not mutually exclu-
sive, and in fact operate jointly in many systems, with vary-
ing relative importance (Ranta et al. 1999).

Despite an abundant literature on population synchrony, 
very few studies (e.g., Grenfell et al. 1998; Tedesco and 
Hugueny 2004) have clearly identified which mechanism 
is involved in particular populations. This has been done 
experimentally (Benton et al. 2001) or by studying sys-
tems where the influence of one of the mechanisms could 
be discarded, as for instance with populations located in 
different islands between which dispersion is impossi-
ble (Grenfell et al. 1998). However, such systems are rare 
and experimental settings are not appropriate for study-
ing large organisms (e.g., mammals) over long time peri-
ods. Consequently, the most common approach to identify 
which mechanism prevails in population synchrony has 
been to use time series transformations (TSTs) of abun-
dance data using statistical methods. The idea in such a 
procedure is to eliminate the signature of one mechanism 
to highlight the effect of the other (Bjørnstad et al. 1999). 
For instance, eliminating temporal autocorrelation (by a 
prewhitening procedure) in population time series makes it 
possible to focus on density-independent mechanisms, such 
as environmental noise (Hanski and Woiwod 1993). Like-
wise, eliminating long-term trends (by a detrending proce-
dure) makes it possible to focus on local processes (e.g., 

dispersal) rather than global ones, such as long-term cli-
mate change (Koenig 1999). However, removing trends in 
time series can reduce the power to detect real relationships 
(Pyper and Peterman 1998) and, in some cases, detrending 
can increase the autocorrelation in a data set. For instance, 
if observations in time series are independent, detrend-
ing creates a dependency among data points (Brown et al. 
2011). Furthermore, the presence of temporal autocorrela-
tion and/or long-term trends in a time series could indicate 
the presence of low-frequency (i.e., slowly changing) vari-
ability (Pyper et al. 1999). Yet, if low-frequency sources are 
also sources of real covariation between time series, then 
their removal (by a detrending or a prewhitening proce-
dure) can greatly reduce our ability to detect that covaria-
tion (increase of type II error rate). As far as we are aware, 
the effects of various TSTs on synchrony measurements 
remain to be compared.

Here we looked at time series of the abundance data for 
34 fish species in 592 French rivers in four different ways: 
as raw data, as detrended data, as prewhitened data, and as 
a combination of both TSTs (prewhitening and detrend-
ing). We then computed various statistics, frequently used 
in synchrony analyses, to find out whether a large-scale 
climatic factor (temperature) had any influence on fish 
population dynamics in these four time series. We then 
compared the results obtained using each of the TSTs to 
those obtained using the raw data in order to identify the 
effect of each transformation on the different measures 
used. Finally, using empirical and simulated time series, 
we tested whether the influence of TSTs on time series and 
population synchrony levels vary depending on the features 
of the original time series (i.e., length, strength and evi-
dence of both density dependence and long-term trend).

Our expectations were as follows. First, by eliminating the 
signature of one mechanism, TSTs should reduce our overall 
ability to detect significant synchrony, but could be used to 
identify drivers of population synchrony by comparing the 
results obtained using raw data (Bjørnstad et al. 1999). How-
ever, we supposed that TSTs could lead to false outcomes by 
removing part of the signal of interest. Second, TSTs were 
expected to have different influences on the results depend-
ing on the features of the raw time series. For instance, for 
time series that do not display long-term trends (or density 
dependence), detrending (or prewhitening) should have little 
influence on the time series and therefore on the results.

Materials and methods

Fish and temperature data sets

Fish population abundances were provided by the French 
National Agency for Water and the Aquatic Environment 
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(Onema). These annual data were obtained between 1982 
and 2010 by electrofishing during periods of low flow (for 
further details see Poulet et al. 2011). At each sampling 
occasion, fish were identified to species level, counted, and 
released. From this data set we conserved only the species 
for which at least nine population time series including 
at least 8 years of non-null captures were available. This 
resulted in the selection of 34 fish species (Table 1). We 
chose to have at least nine population time series, because 
we wanted to have: (1) populations that were representative 
of the different conditions experienced by the species in 

its geographic range, and (2) enough populations to com-
pute a reliable estimate of species synchrony levels. For the 
number of years within the time series, we chose the same 
number as that used in a study involving a previous version 
of our database (Poulet et al. 2011). We therefore used a 
data set consisting of 609 sites located throughout France 
(Fig. 1a) with 8–25 years of sampling (mean 12.5 years; 
SD 3.6 years), corresponding to a total of 7015 sampling 
occasions. The method used neither required the same 
exact years to be covered for the different sites nor the 
years to be consecutive, but all times series that had more 

Table 1  Data for the 34 French 
fish species studied

n Number of time series, npairs number of cross-correlation coefficients, GRS species’ geographic range 
size (km2), LS species’ life span (years), mean distance mean pairwise distance between sites (km)
a For some species the LS is the mean of different values found in the literature

Species name n npairs GRS (km2) LSa (years) Mean distance (km)

Abramis brama 24 204 260,713 14.5 396

Alburnoides bipunctatus 53 794 273,135 6 308

Alburnus alburnus 107 2480 453,288 6 371

Ameiurus melas 17 64 138,562 9 247

Anguilla anguilla 205 12,173 604,842 17 413

Barbatula barbatula 245 21,344 550,434 7 377

Barbus barbus 129 4813 407,407 14 366

Blicca bjoerkna 26 126 273,271 10 279

Carassius sp. 12 46 195,257 10 326

Chondrostoma nasus 26 268 146,168 13.5 222

Cottus gobio 25 160 118,620 5 259

Cottus perifretum 167 10,586 358,455 6 310

Cyprinus carpio 11 54 176,032 15.5 270

Esox lucius 61 1073 402,545 13 312

Gasterosteus gymnurus 17 89 233,558 3 336

Gobio gobio 219 14,353 403,731 5 338

Gobio lozanoi 9 36 3732 5 59

Gobio occitaniae 73 1848 103,693 5 188

Gymnocephalus cernua 25 214 257,607 8.5 390

Lampetra planeri 67 2043 364,842 7 330

Lepomis gibbosus 161 6180 437,089 8 325

Leuciscus burdigalensis 40 597 225,996 10 285

Leuciscus leuciscus 60 961 244,492 10 221

Perca fluviatilis 83 1720 382,141 14 327

Phoxinus phoxinus 247 22,170 535,689 6.5 362

Pungitius laevis 17 105 104,217 4 248

Rhodeus amarus 31 174 163,084 5 286

Rutilis rutilis 261 17,860 554,946 12 371

Salmo salar 22 153 224,366 8 300

Salmo trutta 285 29,691 634,835 6.5 433

Scardinius erythrophthalmus 27 87 300,342 8 413

Squalius cephalus 311 27,854 532,186 8 368

Telestes souffia 25 220 90,361 10 183

Tinca tinca 43 445 412,592 12 382
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than 3 consecutive years missing were discarded to mini-
mize the influence of missing information on our results. 
The number of zero counts ranged from zero to 13, depend-
ing on the time series (mean 0.89; SD 2.16).

Daily air temperature data from 1982 to 2010 were 
provided by Météo France. This database (SAFRAN; Le 
Moigne 2002), is a regular 8-km grid, in which the daily air 
temperature was calculated for each cell by optimal inter-
polation of climatically homogeneous zones (for further 
details see Le Moigne 2002). Studies have shown that air 
temperature provides a reliable proxy for water tempera-
ture (e.g., Caissie 2006). Since warm temperatures during 
the summer have been shown to affect fish population syn-
chrony (Grenouillet et al. 2001; Cattanéo et al. 2003), we 
calculated the mean air temperature during the warmest 
month of each year for each site. We then used this meas-
ure to estimate the degree of temperature synchrony (i.e., a 
proxy of the Moran effect) between the different sampling 
sites to determine whether it influenced fish population 
synchrony.

Definition of TSTs and estimation of time series 
features

Population time series were considered in four differ-
ent ways: as raw data, as residuals obtained from a linear 
model with the year as a covariate to eliminate the long-
term trend (detrended data), as residuals obtained from a 
stock-recruitment Ricker model (Ricker 1958) to elimi-
nate temporal autocorrelation due to intrinsic population 

dynamic (prewhitened data), and as residuals obtained 
from a stock-recruitment Ricker model that included the 
year as a covariate to eliminate both the long-term trend 
and the temporal autocorrelation due to intrinsic popula-
tion dynamic (prewhitened and detrended data). The pre-
cise specifications for the four types of time series are 
presented in the electronic supplemental material (ESM; 
Appendix S1). The models used for TSTs were fitted to 
the raw data using the iteratively reweighted least square 
method (McCullagh and Nelder 1989). The coefficients of 
these models (i.e., trend and density dependence) were then 
extracted, and used to characterize the raw time series. All 
calculations were performed in R (R Core Team 2013).

Synchrony analyses

Measuring synchrony: populations, species and scales 
of synchrony

For each species and the four types of time series, we 
measured population synchrony by computing Spearman 
cross-correlation coefficients (CCCs) between all pairs of 
time series with at least 8 years in common (Buonaccorsi 
et al. 2001). From these CCCs, we calculated species syn-
chrony as the average of the CCCs weighted by the number 
of overlapping years of data between pairs of time series. 
To determine whether species synchrony was significantly 
different from zero, we used a bootstrap procedure with 
resampling of time points within each time series, and then 
recalculated the mean between all the CCCs computed 

Fig. 1  a Study area showing the distribution of the sampling sites. 
Gray scale indicates the number of years available for each site, 
light gray indicates sites for which we have the fewest years, dark 
gray indicates sites for which we have the greatest number of years. b 
Relationship between temperature synchrony and the Euclidean dis-

tance between the 609 sampling sites (n = 148,368). The intersection 
between the two dashed lines represents a measure of the spatial scale 
of temperature synchrony, whereas the intersection between the two 
dotted lines represents the synchrony at close distance; 95 % confi-
dence intervals are also shown
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from the resampled time series (Lillegård et al. 2005). To 
rule out the effect of dispersion, the same analysis was con-
ducted considering only the populations situated in differ-
ent catchments (i.e., between which dispersion is theoreti-
cally impossible).

As the variable distances over which the different popu-
lations were sampled could influence species synchrony 
levels [species with aggregated populations generally dis-
playing higher synchrony levels (Sutcliffe et al. 1996)], and 
thus the subsequent analysis (see below), we tested whether 
the species geographic range size (GRS) had an influence 
on our measure of species synchrony using Spearman’s 
cross-correlation coefficients. For each species, GRS was 
measured as the area (km2) of the smallest convex set of the 
subset of sites occupied by the species [i.e., the convex hull 
(Barber et al. 1996)].

The scale (i.e., the spatial extent) of synchrony is the 
distance beyond which population synchrony is over-
all no longer significantly different from zero (Bjørnstad 
and Falck 2001). To estimate the spatial extent of popula-
tion synchrony for each species, we first calculated the 
Euclidean distance between each population. We chose the 
Euclidean distance because we considered this metric to be 
more representative of the similarity of the environmental 
conditions experienced by the different populations than 
a metric based on the distance along the river segments. 
Then, for each species and all four types of time series, we 
used generalized additive models to study the relationship 
between CCCs and distance, weighted for the length of 
the time series. We used the x-intercept (i.e., the intersec-
tion with the line y = 0) of this relationship as a measure 
of the spatial scale of species synchrony (Bjørnstad and 
Falck 2001), whereas the y-intercept was used as a meas-
ure of species synchrony at small distances (i.e., for sites 
that were located close to each other; see Fig. 1b for an 
example).

Determinants of population synchrony: distance 
between sites and temperature synchrony

For each species and all four types of time series, we used 
Mantel tests (Mantel 1967) to determine whether popula-
tion synchrony (i.e., CCC) was significantly influenced by 
the Euclidean distance between sites as well as by temper-
ature synchrony. The scale of temperature synchrony was 
measured over all the study sites (Fig. 1b) using the same 
procedure as the one used to estimate the spatial extent of 
population synchrony for the different species.

Influences of TSTs

As we performed multiple tests to compare the results 
obtained from each TST relative to raw data, the reported 

P-values were adjusted according to the sequential Bonfer-
roni procedure to conserve an initial error rate of 5 %.

To find out whether the influence of TSTs on the time 
series and the level of population synchrony depended 
on the features of the time series, we used linear mixed-
effect models. As the results did not changed depending 
on whether the coefficients of trend and density depend-
ence were estimated separately (using TST I and TST 
II) or simultaneously (using TST III), only the results 
obtained from the latter are presented. The same analysis 
was repeated on simulated time series with known proper-
ties to confirm the results obtained empirically (the detailed 
description of the procedure used to simulate the time 
series is presented in the ESM; Appendix 3). To check for 
violations of model assumptions, we performed a visual 
inspection of the residuals for all reported models.

The ability to remove trend and temporal autocorrelation

For the four types of time series, we assessed the number 
of time series that showed a significant trend or temporal 
autocorrelation using a non-parametric Mann–Kendall 
trend test (Kendall 1955) and the autocorrelation function 
implemented in R (Venables and Ripley 2002), respec-
tively. For the latter, we only considered the autocorrela-
tion with a 1-year lag. We then compared the number of 
time series that displayed significant trend or temporal 
autocorrelation for the four types of time series, to assess 
whether the component of interest (e.g., trend) had in fact 
been eliminated by the corresponding TST (e.g., detrend-
ing), and whether the other (e.g., temporal autocorrelation) 
had not been affected.

Effects of TSTs on the time series

To determine the extent to which TSTs modified the raw 
time series, we computed Spearman cross-correlation coef-
ficients between the raw time series and the time series 
obtained with each TST. This led to the creation of three 
variables representing the degree of similarity between the 
raw time series and the time series altered by each TST. A 
high correlation would indicate a high similarity (i.e., a low 
influence of TST) whereas a low correlation would indicate 
a low similarity (i.e., a strong influence of TST). We then 
used Wilcoxon-paired tests to find out whether the average 
correlation calculated between the raw time series and the 
modified ones depended on the TSTs. The same procedure 
was performed on the simulated time series (Appendix S3).

To determine whether the similarity between the 
raw time series and the time series altered by each TST 
depended on the features of the raw time series, we com-
puted three linear mixed-effect models with the length of 
the time series and the estimated coefficients of trend and 
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density dependence as independent variables. The last two 
variables were entered into the model as absolute values so 
as to focus on the effect of their strength. To account for 
species variability, we added random effects on the inter-
cepts and slope coefficients of each independent variable. 
The three dependent variables (i.e., similarities between 
the raw time series and the modified ones) were normal-
ized using a Box-Cox power transformation (Box and Cox 
1964). Model equation and parameter descriptions are pre-
sented in the ESM (Appendix S2). The same procedure was 
performed on simulated time series (Appendix S3).

Effects of TSTs on population synchrony

To quantify the degree to which population synchrony was 
influenced by TSTs, we calculated the differences between 
the CCCs estimated using each of the TSTs and those esti-
mated using the raw data. We thus obtained three variables 
representing the degree of dissimilarity between the CCCs 
obtained with each TST relative to those obtained with the 
raw data. To focus on the magnitude of these differences, 
we took the absolute values of these three variables. A high 
value would indicate a strong influence of TSTs whereas 
a low value would indicate a low influence. We then used 
Wilcoxon-paired tests to find out whether the average dif-
ferences in the CCCs varied depending on the TST used. 
The same procedure was performed on the simulated time 
series (Appendix S3).

To determine whether the features of the raw time series 
influenced the differences between the CCCs calculated 
using the raw time series and those calculated using each 
TST, we computed three linear, mixed-effect models. For 
the length of the time series, we considered the common 
length used in calculating the CCCs. For density depend-
ence and trend we focused on whether these processes were 
significantly detected in the time series using the autocor-
relation function and the Mann–Kendall trend test, respec-
tively. Thus, density dependence and trend were represented 
by ordinal variables coded from zero (neither of the two 
time series under consideration displayed significant values) 
to two (significant values in both time series). The models 
were constructed separately for each species to reduce their 
complexity and improve model convergence. To account for 
the variability associated with the sites involved in the calcu-
lation of the CCCs, we added random effects on the slopes 
and intercepts of the trend and density-dependent variables. 
The three dependent variables (i.e., differences calculated 
between CCCs estimated with raw data and those estimated 
with each TST) were Box-Cox transformed. Model equa-
tion and parameter descriptions are presented in the ESM 
(Appendix S2). The same procedure was performed on the 
simulated time series (Appendix S3).

Effects of TSTs on synchrony measurements and the 
determinants of population synchrony

We used Wilcoxon-paired tests: (1) to find out whether 
TSTs had a significant influence on the different statistics 
calculated for the 34 fish species using the raw data (i.e., 
overall synchrony, inter-catchment synchrony, scale of 
synchrony, and synchrony at small distances); and (2) to 
determine whether TSTs modified our ability to identify 
the determinants of population synchrony for the 34 fish 
species (i.e., how TSTs modified the relationship between 
population synchrony and the Euclidean distance between 
populations as well as that between population synchrony 
and temperature synchrony).

Results

For the four types of time series, we failed to find any sig-
nificant (P > 0.05) influence of GRS on our measure of 
species synchrony. Our results are therefore expected to be 
weakly influenced by the variable distances over which the 
species were sampled.

Features of the time series

The percentage of time series showing a significant 
long-term trend ranged from 9 to 60 % (mean 34.2 %; 
SD 10.6 %) depending on species (Appendix S4, Table 
S1), between 0 and 48 % of time series showing a posi-
tive trend (mean 20.5 %; SD 11.5 %), and the percent-
age of time series with a negative trend ranged from 0 to 
26 % (mean 13.6 %; SD 5.8 %). Time series showing a 
significant negative density-dependent coefficient ranged 
from 27 to 93 % depending on species (mean 73.9 %; 
SD 14.7 %). When both components were estimated 
simultaneously, the percentage of time series displaying 
significant trend and density dependence differed from 
when they were estimated individually (Appendix S4, 
Table S1), thus revealing an inter-dependency among 
coefficients.

Influence of TSTs

A visual example of the effect of each TST on two 
observed time series is presented in Fig. 2. For the four 
types of time series, this figure also provides estimates of 
the level of synchrony between the two time series as well 
as an estimation of their coefficients of trend and tempo-
ral autocorrelation (the R code used to transform the time 
series and to estimate these coefficients is provided in 
Appendix S5).
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The ability to remove trend and temporal autocorrelation

Among the 3131 time series considered, we found that 606 
(19 %) showed a significant long-term trend, whereas 153 
(5 %) displayed significant temporal autocorrelation. Once 
the long-term trend had been eliminated, seven (0.2 %) 
time series still displayed a significant long-term trend, 
while 105 (3 %) showed significant temporal autocorrela-
tion. When accounting for intrinsic population dynamic, 
18 (0.6 %) out of the 153 time series still showed sig-
nificant temporal autocorrelation, whereas 153 (5 %) dis-
played a significant long-term trend. When both compo-
nents were removed simultaneously, 30 (1 %) time series 
presented significant temporal autocorrelation, whereas 
one time series (<0.1 %) still displayed a significant long-
term trend.

Effects of TSTs on the time series

The correlations calculated between the raw time series 
and the modified ones were on average greater when con-
sidering the time series obtained from TST I (median 0.89; 
SD 0.17), and smaller when using the time series obtained 
from TST III (median 0.75; SD 0.18) (Fig. 3a). We found 
intermediate levels of similarity between raw data and time 
series obtained with TST II that were nonetheless quite 
similar to those found with time series obtained from TST 
I (median 0.85; SD 0.19). Wilcoxon-paired tests revealed 
significant (P < 0.001) differences between these correla-
tions. Thus, TST I and II had less influence on the time 
series than TST III. These results were confirmed by analy-
ses conducted on the simulated time series (Appendix 6, 
Fig. S1a). However, the influence of TST II (median 0.56; 
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SD 0.27) on the time series was closer to the one of TST 
III (median 0.52; SD 0.26) which was far greater than the 
influence of TST I (median 0.91; SD 0.18).

With regard to the correlations calculated between 
the raw time series and the ones obtained with TST I, the 
mixed-effects model revealed a negative influence of the 
strength of the long-term trend (P < 0.001) and a positive 
influence of the strength of density dependence (P < 0.001; 
Appendix S6, Table S2). Thus, time series that presented a 
low density dependence, but a high long-term trend were 
modified by TST I to a greater extent than those with the 
opposite features. The same general pattern was found 
when considering correlations calculated between raw data 
and time series obtained from TST II and III (Table S2). 
These results were further confirmed by analyses conducted 
on simulated time series, which besides revealed a negative 
influence of the length of the time series (Table S2). Thus, 
long time series were modified to a greater extent by TSTs 
than short time series.

Effects of TSTs on population synchrony

Differences between the CCCs calculated using the raw 
time series and those calculated using the modified ones 

were on average higher for TST III (median 0.21; SD 0.21), 
and lower for TST I (median 0.14; SD 0.18; Fig. 3b). We 
found intermediate differences between the CCCs calcu-
lated with the raw time series and those calculated with 
TST II (median 0.18; SD 0.18). Wilcoxon-paired tests 
revealed that these differences were significantly influ-
enced by TSTs (P < 0.001). Thus, relative to the raw data, 
TST I had less influence on the CCCs than TSTs II or III. 
The same general pattern was found on the simulated time 
series (Appendix 6, Fig. S1b).

Mixed-effect models relating the differences in CCCs 
to the features of the time series converged for 17 out of 
the 34 species when the difference in CCCs obtained using 
raw data and those obtained using TST I were considered 
(Appendix 6, Table S3). Among these, 14 (82 %) displayed 
differences in CCCs that were significantly (P < 0.05) posi-
tively related to the long-term trend, whereas four (23 %) 
and 11 (64 %) species displayed differences in CCCs that 
were significantly (P < 0.05) negatively related to the tem-
poral autocorrelation and the length of the time series, 
respectively. Thus, the difference between the CCCs calcu-
lated using the raw data and those calculated using TST I 
was greater when no time series displayed significant tem-
poral autocorrelation, both time series displayed a signifi-
cant long-term trend, and the length shared by both time 
series was short. Even though the number of species pre-
senting significant associations with time series features 
was lower, the same general pattern was found for the dif-
ferences calculated between the CCCs estimated from raw 
data and those estimated from TSTs II and III (Table S3). 
These results were supported by linear models performed 
on the simulated time series (Table S3). However, con-
trary to empirical time series, we found that the differences 
between the CCCs calculated using the raw data and those 
calculated using either TST II or III were greater when both 
time series displayed significant temporal autocorrelation.

Effects of TSTs on species synchrony, spatial variation 
of synchrony and the determinants of population synchrony

Detailed results describing how: (1) synchrony measure-
ments (overall and inter-catchment species synchrony, 
scale of synchrony and synchrony at short distance); and 
(2) the relationship between population synchrony and 
its determinants (temperature synchrony and the Euclid-
ean distance between populations) changed depending on 
TSTs are presented in Appendix S6 (Table S4–S6). For the 
raw data, we found that more than half (64 %) of the spe-
cies displayed significant levels of population synchrony 
even though these were weak (Table S4). When consid-
ering only the populations that were located in different 
catchments, we found that 67 % of the species displayed 
significant synchrony levels. Several species (30 %) were 
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Fig. 3  a Correlations between the raw time series and the time series 
obtained with each of the TSTs (n = 3131). b Differences between 
the cross-correlation coefficients (CCCs; i.e., population synchrony) 
calculated using the raw data and those calculated using the TSTs 
(n = 180,864)
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synchronous over large distances (>200 km, Table S5), that 
significantly differed from zero (according to 95 % con-
fidence intervals), which coincided with the scale of syn-
chrony measured for temperature (i.e., >400 km; Fig. 1b). 
Less than half (41 %) of the species displayed significant 
levels of synchrony at close distances (Table S5). For 17 % 
of the species, the level of population synchrony was sig-
nificantly related to the level of temperature synchrony 
(Table S6). Finally, for 30 % of the species, we found a 
significant (P < 0.05) negative relationship between the 
level of population synchrony and the Euclidean distance 
separating them (Table S6).

Whatever the measures considered, the results were 
globally biased downward by TSTs (Figs. 4, 5) but the 
influence of TSTs was highly variable depending on the 
metric and the species considered (see Tables S4–S6). 
Overall, we found no statistical differences (P > 0.05) 
between the results obtained with raw data and those 
obtained with TSTs either for species synchrony (both 
overall and inter-catchments species synchrony; Fig. 4a, 
b), the scale of synchrony (Fig. 5a), the synchrony at short 
distances (Fig. 5b), the relationship between population 
synchrony and Euclidean distance between populations 
(Fig. 5c) or the relationship between population synchrony 
and temperature synchrony (Fig. 5d).

Discussion

Our goals in this study were: (1) to determine whether a 
Moran effect had any influence on fish population dynam-
ics at the regional scale, and (2) to quantify the influence 
of three commonly used TSTs on synchrony measurements 
as well as on our ability to identify the determinants of 
population synchrony. To do this, we used empirical time 
series of abundance data for 34 fish species, and computed 
several statistics commonly used in synchrony studies. We 
then compared the results obtained using the raw data to 
those obtained using the TSTs. Using both empirical and 
simulated time series, we also quantified the influence of 
TSTs on time series and population synchrony levels and 
tested whether this influence depended on the features of 
the raw time series.

Evidence for a Moran effect

Using the raw data, we found that population synchrony, 
though generally significant, was weak for all 34 fish 
species found in French rivers. Such weak patterns of 
population synchrony have already been shown in birds 
(Paradis et al. 2000), fish (Grenouillet et al. 2001) and 
amphibians (Trenham et al. 2003), and can be explained 
by several factors. For instance, most populations of the 
same species did not have the same density-dependent 
structure, (which violate Moran’s assumption of identi-
cal density-dependent dynamics) and can explain the 
low levels of synchrony observed between populations 
(Hugueny 2006). Chaotic (Kendall et al. 2000) or non-
linear (Benton et al. 2001) population dynamics can also 
reduce population synchrony, and we cannot exclude 
the possibility that some of the populations studied here 
may have had such dynamics. Moreover, Grenouillet 
et al. (2001) have shown that for age-structured species 
the different age classes can be governed by different 
processes (density dependent vs. density independent), 
which reduces synchrony at the population level. Finally, 
the presence of measurement errors in population time 
series has been shown to biase downward synchrony lev-
els (Santin-Janin et al. 2014).

For most of the species we found a negative relation-
ship between population synchrony and the Euclidean 
distance between sites, which is consistent with previous 
studies. Such a relationship can be explained by dispersal 
(Ranta et al. 1995), as well as by the Moran effect (Koenig 
2002). However, given that dispersal between catchments is 
unlikely for fish, and that some species were synchronous 
across catchments, fish population synchrony could partly 
be attributed to the Moran effect. Moreover, temperatures 
were synchronous over scales comparable to the scale of 
synchrony found for some species, thus reinforcing the 
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Fig. 4  Difference between a overall synchrony (i.e., mean of all 
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involving only population situated in different catchments) calcu-
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difference between the results obtained using the raw data and those 
obtained with the TSTs. For abbreviations, see Figs. 1 and 2
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Moran effect hypothesis. Further support for climate-driven 
population synchrony was provided by the significant rela-
tionship between population synchrony and temperature 
synchrony. Nevertheless, as this relationship did not hold 
for all the species displaying significant synchrony, other 
climatic factors (e.g., rainfall) may be involved in both fish 
population dynamics (Lobon-Cervia 2008) and synchrony 
(Cattanéo et al. 2003).

Nonetheless, we found that removing temporal auto-
correlation due to intrinsic population dynamics (pre-
whitening procedure) reduced population synchrony lev-
els to a greater extent than removing the long-term trend 
(detrending procedure), suggesting a higher contribution 
of local processes to population synchrony than regional 
ones (Bjørnstad et al. 1999). This contrasts with the fact 

that the number of time series presenting significant long-
term trends was more than two times higher compared to 
those presenting significant temporal autocorrelation. Such 
difference between the detrending and the prewhitening 
procedure can be explained by a high uncertainty in the 
estimation of the long-term trend coefficient relative to 
the density-dependent coefficient. Indeed, simulated time 
series revealed that the efficiency of the stock-recruitment 
Ricker model to estimate long-term trend was low (Fig. 
S2a) which contrasted with its ability to estimate density 
dependence (Fig. S2b). This model has been widely used 
in synchrony studies (e.g., Myers et al. 1997; Cattadori 
et al. 2000) and its choice here was motivated by the high 
proportion of time series (>80 %) presenting a significant 
negative relationship between log(Nt+1/Nt) and Nt. Such a 
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tal dotted line indicates the absence of difference between the results 
obtained using the raw data and those obtained with the TSTs
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low propensity of this model to estimate long-term trends 
in abundance time series raises concerns about its ability to 
remove this component.

Influences of TSTs

Removing trend and/or temporal autocorrelation was not 
always efficient as some time series still presented signifi-
cant signals once TSTs had been applied. This could be 
explained by the method used to remove the component 
of interest. For instance, several competing methods exist 
to remove the long-term trend (Buonaccorsi et al. 2001) 
and we cannot exclude the possibility that another method 
would have done a better job. However, considering the 
number of time series analyzed in this study (i.e., 3131), a 
unique method is not expected to be efficient in all cases. 
We also found that removing one component in the time 
series without affecting the other is not straightforward. 
For instance, if removing temporal autocorrelation also 
removes some part of the long-term trend then, one could 
wrongly conclude that populations are not influenced by a 
large-scale climatic factor, which could have dramatic con-
sequences in a conservation perspective as population syn-
chrony is, to some extent, related to species extinction risk 
(Hanski and Woiwod 1993).

We expected that time series with a low long-term 
trend would be weakly affected by TST I, as would time 
series that displayed low density dependence and TST II. 
However, although we found the expected pattern for the 
long-term trend and TST I in both empirical and simu-
lated time series, we found that time series that displayed 
low density dependence were affected by TSTs to a greater 
extent than time series displaying high density depend-
ence, which contradicts the result obtained from simulated 
time series (i.e., for which we found the expected pattern). 
Estimating density dependence in population time series 
has always proved to be challenging (Dennis et al. 2006), 
notably because it depends on several time series features 
(Clark and Bjørnstad 2004). For instance, even though the 
sampling procedure is considered efficient (as is the case 
in this study), population time series usually present cen-
sus errors (Freckleton et al. 2006), which strongly influ-
ence the strength and evidence for density dependence 
(Knape and De Valpine 2012). To take these errors into 
account, state-space models have been used, and stud-
ies have shown that they usually provide less biased esti-
mates of density dependence (e.g., Freckleton et al. 2006). 
However, state-space models could present identifiability 
issues when process and error variance are both unknown, 
which could lead to large variances in parameter estimates 
(Knape 2008). This is particularly true when the time series 
are short. Other features, such as the number of missing 

values in the time series or the variance around the mean 
of population censuses, could bias the estimation of density 
dependence (Brook and Bradshaw 2006), and could explain 
why time series with low density dependence were modi-
fied to a greater extent than others. Overall, this complexity 
might explain why population synchrony levels measured 
on the empirical data set were modified to a greater extent 
when both time series did not present evidence of temporal 
autocorrelation.

On average, we found that detrending and/or pre-
whitening decreased the measures of synchrony, which 
was consistent with the findings of previous studies. For 
instance, it has been shown that overall synchrony tends to 
be higher when measured using raw data than when meas-
ured using detrended data (Batchelder et al. 2012). This 
decrease after detrending has classically been interpreted 
as evidence for a Moran effect, and it can be explained 
if a long-term trend is an important and shared source of 
variation in the data (Pyper et al. 1999). Similarly, tem-
poral autocorrelation in a time series is known to inflate 
cross-correlation coefficients (Pyper and Peterman 1998; 
Pyper et al. 1999). Consequently, eliminating temporal 
autocorrelation can be expected to reduce the population 
synchrony and, therefore, the overall species synchrony. 
However, Cheal et al. (2007), using detrended time series 
of coral reef fish populations, found that eliminating tem-
poral autocorrelation did not change their measures of 
synchrony. Likewise, even though we observed an over-
all decrease in fish population synchrony, no significant 
influence of prewhitening was observed. Nevertheless, we 
found that, depending on the species considered, TSTs 
can reverse conclusions on synchrony significance. For 
instance, once temporal autocorrelation had been elimi-
nated, overall synchrony was no longer significant for 
Alburnoides bipunctatus, while it had become significant 
for Alburnus alburnus (Tables S4).

When considering the determinants of population syn-
chrony (i.e., distance between populations and temperature 
synchrony), we also found that TSTs could lead to oppo-
site conclusions depending on the species considered. For 
instance, once temporal autocorrelation has been removed, 
we found that the main driver of population synchrony for 
Salmo trutta was temperature synchrony, whereas the dis-
tance between populations was the main driver when the 
raw data were used. Likewise, on a study involving 60 bird 
species, Paradis et al. (2000) found that detrending did not 
influence the relationship between synchrony and distance 
for 34 of them, whereas the relationship was strengthened 
for 12, and weakened for 14. Thus, depending on the spe-
cies considered and the TSTs applied to the time series, 
the conclusions could be very different, which could have 
major implications for defining specific management plans.
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Prospects for the future and guidelines for further 
research

For several species, we found some evidence of an effect 
of correlated environmental noise (i.e., a Moran effect) on 
population dynamics as: (1) populations were synchronous 
on a large spatial scale and across catchments, (2) popula-
tion synchrony was related to temperature synchrony, and 
(3) eliminating the long-term trend in time series reduced 
the overall synchrony of the species. However, although 
temperature appeared to be a plausible factor driving pop-
ulation synchrony for some species, other factors are also 
likely to be involved (e.g., the frequency and intensity of 
river discharges). Moreover, we only considered the influ-
ence of temperature during the warmest month of the year, 
which could have biased our conclusions. Indeed, other 
climatic descriptors (e.g., the temperatures during the cold-
est month) could have affected the observed relationship 
between population synchrony and temperature synchrony. 
Further studies are clearly needed to add to our knowledge 
about the factors that drive fish population synchrony in 
France.

In some cases, TSTs can be very helpful for quantifying 
the influence of various processes on population dynam-
ics. For instance, eliminating a long-term trend that is 
due to common climatic influences makes sense if all the 
populations are either increasing or decreasing, because it 
makes it possible to focus on local rather than global pro-
cesses (Buonaccorsi et al. 2001). However, removing long-
term trends for other purposes is more questionable. For 
instance, a trend can be caused by local processes (e.g., 
local pollution) and its removal could make it more likely 
that we could detect an apparent correlation between two 
time series when in fact there was none. Likewise, it is 
common to remove long-term trends because their pres-
ence could give “spurious” correlations (inflation of CCCs) 
whereas their removal could eliminate important informa-
tion that would reduce our ability to detect a real causal 
relationship (Brown et al. 2011). Another problem with 
TSTs is that the different components in the time series are 
not independent of each other. For example, removing the 
temporal autocorrelation in the time series could affect the 
detection (as shown in this study) and the estimation of the 
magnitude (Hamed and Rao 1998) of the long-term trend 
and vice versa. Therefore, if two series do have a causal 
relationship that manifests itself, for example, as a trend in 
each series, this could be masked by the prewhitening pro-
cedure. Thus, a serious problem with using TSTs is that it 
is difficult to know exactly what has been eliminated, and 
so what has been measured. This problem is further com-
plicated by the fact that the influence of TSTs depends on 
the features of the time series. Thus, the use of TSTs should 
be subject to great care and should depend on the features 

of the time series. As a first step, we therefore recommend 
that the features of the time series should be estimated, and 
TSTs used in the light of these estimations. For this pur-
pose, we suggest using population dynamic models (e.g., 
Ricker or Gompertz population models, depending on the 
data), as they make it possible to estimate both the density 
dependence and the long-term trend. Nonetheless, the effi-
ciency of the stock recruitment Ricker model to estimate 
long-term trends has raised concerns and further studies are 
needed to determine whether it is also the case for other 
statistical models. If one wants to focus on local processes, 
we recommend removing the long-term trend only if all 
the time series are either increasing or decreasing (Buon-
accorsi et al. 2001). When studying global processes, the 
data should not be detrended. If the time series do not pro-
vide any evidence of density dependence (i.e., of lag-one 
temporal autocorrelation), we recommend not removing 
temporal autocorrelation, as this transformation strongly 
modifies the time series and therefore any subsequent 
analyses (e.g., estimation of population synchrony). If the 
time series display density dependence, we propose using 
population dynamic models to remove temporal autocorre-
lation, because they can be used to account for more com-
plex population dynamics than simple linear autoregressive 
models (e.g., by integrating non-linear density depend-
ence). One interesting possibility for this purpose would be 
to use state-space models to account for observation errors 
in population censuses.

When using TSTs, we advocate always checking: (1) 
whether the component of interest has really been elimi-
nated, and (2) whether the other component has not been 
affected. Finally, because TSTs can lead to differing (and 
sometimes even opposite) results depending on the species 
considered, we recommend using different TSTs, and inter-
preting the results in the light of the features of the time 
series, taking all the transformations into account.

We believe that analyzing time series in this way could 
improve our understanding of the processes that drive pop-
ulation synchrony by quantifying the relative importance of 
long-term trends and temporal autocorrelation.
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