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Abstract.—Stream fish are expected to be influenced by climate change as they 
are ectothermic animals living in lotic systems. Using fish presence–absence records 
in 1,110 stream sites across France, our study aimed at (1) modeling current and 
future distributions of 35 stream fish species, (2) using an ensemble forecasting ap-
proach (i.e., several general circulation models [GCM] × greenhouse gas emission 
scenarios [GES] × statistical species distribution models [SDM] combinations) to 
quantify the variability in the future fish species distribution due to each compo-
nent, and (3) assessing the potential impacts of climate change on fish species dis-
tribution and assemblage structure by using a consensus method that accounted for 
the variability in future projections.

We found that future projections of fish species distribution were relatively 
consistent among GCM × GES × SDM combinations, with 57% of the total vari-
ability between projections being consensual. The statistical method used was the 
main driver of the variability between future projections, accounting for 70% of 
the total variation. The projections were next influenced by the GCMs, whereas 
the importance of GES was weak. Nonetheless, both the amount of consistency 
among projections and the relative contribution of each uncertainty component to 
the variability in projections were different depending on the species considered. 
Concerning the impacts of climate change, only the scarce coldwater species (e.g., 
brown trout Salmo trutta fario) were predicted to experience a strong reduction in 
their distributional area, whereas most coolwater and warmwater fish species (e.g., 
barbel Barbus barbus, European chub Leuciscus cephalus) were predicted to colonize 
many newly suitable sites located in intermediate streams or upstream. As a result, 
local species richness was forecasted to increase greatly, and high turnover rates 
indicated fundamental changes in the structure of assemblages in the future. More-
over, we found that climate change could result in remarkably different impacts on 
the structure of fish assemblages depending on their position along the upstream–
downstream gradient.

These findings may be viewed as a first estimation of climate-change impacts 
on European freshwater fish biodiversity. They also illustrate the need to account 
for different sources of uncertainty when estimating the potential impacts of cli-
mate change on species distribution modifications.

* Corresponding author: buisson@cict.fr



328 buisson et al.

Introduction

There is now ample evidence that the on-going 
climatic change will irreversibly affect natural 
species across the globe (Hughes 2000; Sala et 
al. 2000; McCarthy 2001; Walther et al. 2002; 
Parmesan and Yohe 2003; Root et al. 2003). 
Among the predicted changes, climate change 
is expected to induce diverse functional (e.g., 
phenology, physiology) and structural (e.g., 
changes in species distribution, range con-
tractions, poleward movements) ecological 
responses among organisms (Parmesan et al. 
1999; Thomas and Lennon 1999; Beaugrand 
et al. 2002; Hickling et al. 2006; Menzel et al. 
2006; Jetz et al. 2007; Levinsky et al. 2007; 
Parmesan 2007). Responses of single species 
to future changes would result in progressive 
species association shifts and potentially cause 
fundamental changes in the structure and 
composition of current assemblages (Hughes 
2000; Walther et al. 2002).

To date, many studies have attempted to 
predict the future distribution of animal and 
plant species by relating species distribution 
and climate-change scenarios (e.g., Berry et al. 
2002; Peterson et al. 2002). Such correlative 
models have been applied to a large diversity 
of taxa, including plants (e.g., Sætersdal et al. 
1998; Thuiller 2004; Ohlemüller et al. 2006), 
insects (e.g., Peterson et al. 2004), mammals 
(e.g., Thuiller et al. 2006a; Levinsky et al. 
2007), herptiles (e.g., Araujo et al. 2006), and 
birds (e.g., Peterson 2003; Jensen et al. 2008; 
Virkkala et al. 2008). Nevertheless, most of 
these previous studies only used a single statis-
tical modeling technique, whereas a wide range 
of these models have now been developed and 
are easily applied to large data sets.

In recent years, some studies have ques-
tioned the errors and uncertainties embedded 
in such statistical models (Thuiller 2004; Arau-
jo et al. 2005; Hartley et al. 2006; Heikkinen et 

al. 2006; Lawler et al. 2006; Araujo and New 
2007). Indeed, projections of the future dis-
tribution of a single species could differ con-
siderably depending on the statistical models, 
and different models could even predict op-
posing outcomes (Araujo et al. 2005; Lawler 
et al. 2006; Pearson et al. 2006). Consensus 
methods and ensemble forecasting represent 
approaches to explore the range of resulting 
projections and to reduce the model-based un-
certainty in predictions of species distribution 
(Thuiller 2004; Araujo and New 2007; Marmi-
on et al. 2009). They are based on the combi-
nations of different single-models and are very 
attractive because they have the advantages of 
taking into account the variability of the pre-
dictions derived from the individual models.

Nevertheless, other sources of uncertainty 
may lead to contrasting projections of future 
species distribution. Indeed, through the In-
tergovernmental Panel on Climate Change 
framework, several general circulation mod-
els (GCM) have been developed by different 
meteorological research centers to represent 
physical processes in the atmosphere, ocean, 
cryosphere, and land surface, thus simulating 
the response of the global climate system to in-
creased greenhouse gas concentrations (IPCC 
2007). Each GCM includes different sto-
rylines defined by the Special Report on Emis-
sion Scenarios (Nakicenovic and Swart 2000). 
Future greenhouse gas emissions will actually 
be the product of very complex dynamic sys-
tems, determined by driving forces such as de-
mographic and socioeconomic developments, 
as well as technological change. Their future 
evolution is highly uncertain, and scenarios 
are thus alternative images of how the future 
might unfold.

Although crucial when forecasting spe-
cies distributions under climate change, the 
relative importance of these different sources 
of uncertainty remains poorly investigated. 
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Thus, combining different statistical modeling 
techniques, GCM and gas emission scenarios 
(GES) may increase the reliability of the pre-
dictions and greatly enhance our understand-
ing of the potential impacts of climate change 
on species distribution.

In that context, this study focused on ap-
plying a range of species distribution models 
(SDM), GCM, and GES to a set of fish spe-
cies occurring in French streams. Compared to 
other organisms such as birds or plants, species 
distribution modeling approaches have been 
applied less often to predict the impacts of the 
on-going climate change on freshwater fish 
species, except in North America (e.g., Minns 
and Moore 1995; Eaton and Sheller 1996; 
Magnuson et al. 1997; Jackson and Mandrak 
2002; Mohseni et al. 2003; Chu et al. 2005; 
Sharma et al. 2007). Stream fish could yet be 
highly vulnerable to broadscale environmental 
changes as most fish species have no physi-
ological ability to regulate their body tempera-
ture (Wood and McDonald 1997).

Thus, this study has three main objectives: 
(1) to model current and future distributions of 
the most common stream fish species in France, 
(2) to use an ensemble forecasting approach 
(several GCM × GES × SDM combinations) to 
quantify the uncertainty in the future fish spe-
cies distribution due to each component, and 
(3) to assess the potential impacts of climate 
change on fish species distribution, and on 
structure and diversity of species assemblages, 
by using a consensus method that accounted for 
the uncertainties in future projections.

Fish Data

Data were extracted from the ONEMA (Office 
National de l’Eau et des Milieux Aquatiques) 
database. ONEMA is the national fisheries or-
ganization in charge of the protection and con-
servation of freshwater ecosystems in France. 

Among the surveyed sites, 1,110 reference (i.e., 
least impacted by anthropogenic perturbations) 
sites were selected. These sites were widespread 
throughout the national boundaries and they 
covered all types of streams, from small head-
waters to large lowland rivers. Two standardized 
electrofishing methods were used depending on 
the river depth and width: smaller rivers were 
sampled by wading and larger ones by boat. 
Species presence–absence data were used to 
describe fish assemblages, and only data of fish 
species that occurred in at least 25 sites were 
retained to reduce errors associated with exces-
sively small sample sizes (Stockwell and Peter-
son 2002; Barry and Elith 2006). This resulted 
in a data set of 35 fish species.

Current and Future Climate  
Conditions

Three variables related to fish ecological re-
quirements were used to describe climate 
conditions: mean annual precipitation, mean 
annual air temperature, and annual air tem-
perature amplitude derived from the difference 
between mean air temperature of the warmest 
month and mean air temperature of the cold-
est month. Only mean annual precipitation was 
log-transformed to correct for nonnormal dis-
tribution. The CRU CL 2.0 (Climatic Research 
Unit Climatology 2.0 version) data set (New et 
al. 2002) at a resolution of 109 × 109was cho-
sen to describe the current climate. Climate 
conditions were averaged for the period 1961–
1990.

Future climate predictions were aver-
aged for the time period 2051–2080 (referred 
to as the 2080 scenario) for each of the three 
climatic descriptors. These predictions were 
derived from three GCM: HadCM3 (Hadley 
Centre for Climate Prediction and Research), 
CGCM2 (Canadian Centre for Climate Mod-
eling and Analysis), and CSIRO2 (Common-
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wealth Scientific and Industrial Research Or-
ganisation). Four GES from the Special Report 
on Emission Scenarios of the Intergovernmental 
Panel on Climate Change (Nakicenovic and 
Swart 2000) were used for each of the GCM. 
These four GES were chosen to represent dif-
ferent degrees of climate change severity with 
expected concentrations in CO2 by the year 
2100 of 960, 840, 620, and 550 ppm for the 
A1FI, A2, B2, and B1, respectively. The A1FI 
scenario may be viewed as the “high emission” 
scenario and is mainly fossil-fuel intensive. The 
A2 scenario (“medium-high”) represents high 
human population growth and slow techno-
logical advancement, whereas the B2 scenario 
(“medium-low”) has moderate population 
growth with more environmental protection. 
The B1 scenario is considered as the “low 
emission” scenario with particular emphasis 
on global solutions to economic, social, and 
environmental sustainability. For each sam-
pling site, values of the three studied climatic 
variables were extracted for all GCM × GES 
combinations, thus providing 12 different pro-
jections for future climate conditions.

Environmental Characteristics

Although a large number of studies applied 
strictly bioclimatic models to predict the fu-
ture impacts of climate change (e.g., Sætersdal 
et al. 1998; Berry et al. 2002; Thuiller et al. 
2005; Virkkala et al. 2008), recent studies have 
demonstrated that large-scale modeling stud-
ies, which did not account for nonclimatic vari-
ability (e.g., topography), may have underesti-
mated the potential impacts of climate change 
(Trivedi et al. 2008). As stream ecosystems have 
great variability in their environmental condi-
tions, ranging from small headwater streams to 
large lowland channels, it is crucial to take into 
account such local factors when addressing the 
potential impacts of climate change. Therefore, 
we included both climatic and nonclimatic fac-

tors in our species-models, allowing us to as-
sess the potential responses of fish assemblages 
both at the large scale (i.e., all of France) and 
along the upstream–downstream gradient.

At each site, six variables were measured 
to describe environmental conditions: SDB 
(surface area of the drainage basin above the 
sampling site, km2), DS (distance from the 
headwater source, km), WID (mean stream 
width, m), DEP (mean water depth, m), SLO 
(river slope, %), and ELE (elevation, m). A 
principal component analysis (PCA) was used 
to summarize the covariation between DS and 
SDB, and the first axis was kept as a synthetic 
variable describing the position of sites along 
the upstream–downstream gradient G. Fol-
lowing Oberdorff et al. (2001), a rough ap-
proximation of local velocity (V) derived from 
the Chezy formula was calculated from WID, 
DEP, and SLO. Thus, three variables (i.e., ELE, 
G, and V) were used to describe environmen-
tal characteristics at each site.

Because these three environmental vari-
ables were correlated with climatic variables, 
we adjusted these variables for the three cli-
matic variables by fitting generalized additive 
models (GAM) with four degrees of freedom 
(Leathwick et al. 2006; Thuiller et al. 2006b). 
The residuals of each of the GAM indicated the 
deviation from the average G, V, and ELE ex-
pected with their climatic conditions. We used 
these three residuals as individual predictors.

Species Distribution Modeling

For each fish species, seven statistical methods 
were used to model fish distribution: (1) gen-
eralized linear models (GLM) are extensions of 
linear models able to handle nonlinear relation-
ships by fitting parametric terms (McCullagh 
and Nelder 1989); (2) GAM are nonparametric 
extensions of GLM using a smoother to fit non-
linear functions (Hastie and Tibshirani 1990); 
(3) multivariate adaptive regression splines 
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(MARS) are an alternative regression-based 
method for fitting nonlinear responses, using 
piecewise linear basis functions (Friedman 
1991); (4) linear discriminant analysis (LDA) 
finds the linear combination of predictor vari-
ables that best discriminates between the de-
fined groups; (5) classification and regression 
trees (CART) use recursive binary partition-
ing to split the data into increasingly smaller, 
homogenous, subsets until a termination is 
reached (Breiman et al. 1984); (6) aggregated 
boosted trees (ABT) compute a sequence of 

single regression trees by combining a boost-
ing algorithm and a regression-tree algorithm 
(Friedman 2001; De’ath 2007); and (7) random 
forests (RF) are a model-averaging approach 
generating hundreds or thousands of random 
trees built from a set of randomly selected pre-
dictors and observations (Breiman 2001). Each 
modeling technique was implemented using the 
same six input variables and following the same 
modeling procedure (summarized in Figure 1).

First, we randomly selected 70% of the sites 
within each river unit to calibrate the models, 

Figure 1.  Modeling procedure (see text for details). It indicates the division of data into training and 
validation sets followed by its use in various general circulation models (GCM) and greenhouse gas 
emission scenarios (GES) models. SDM: species distribution models.
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allowing us to maintain an equal proportion 
of each river unit in the calibration (777 sites) 
and validation (333 sites) data set (step 1, Fig-
ure 1). Then, we calibrated each SDM using 
the calibration data set. Current predictions 
were subsequently calculated from the cali-
brated models for all of the 1,110 sites (step 2, 
Figure 1). These predictions of probability of 
occurrence of each species were converted into 
presence–absence using a threshold maximiz-
ing the sum of two measures: sensitivity (i.e., 
the percentage of presence correctly predicted) 
and specificity (i.e., the percentage of absence 
correctly predicted).

The next step was to evaluate the current 
predictive performance of each SDM using the 
validation set (step 3, Figure 1). Two measures 
of performance were used: the area under the 
curve (AUC) of a receiver operating character-
istic plot (Fielding and Bell 1997; Pearce and 
Ferrier 2000) and the overall accuracy of each 
model. The AUC ranges between 0.5 for mod-
els that discriminate no better than random 
sorting would and 1 for models that discrimi-
nate perfectly (Swets 1988). The AUC does 
not require transformation of the predicted 
probability of occurrence in binary data and 
it is not biased by species prevalence (Field-
ing and Bell 1997). The accuracy is based on 
binary predictions and measures the percent-
age of both presence and absence correctly 
predicted, thus allowing one to quantify the 
match between predicted and observed distri-
butions using an independent data set.

Overall, the performances of the individ-
ual models in predicting current distributions 
were good (Figure 2). Across the 35 species, 
the mean AUC ranges from 0.72 6 0.08 for the 
CART to 0.85 6 0.05 for the RF method, and 
the mean accuracy from 74.50 6 4.64% for the 
MARS to 79.50 6 6.57% for the CART meth-
od. This last result indicated that around 75% 
of the sites were predicted in agreement with 

the observations. Performance measures were 
coarsely equivalent for all the seven statistical 
method (except the AUC of the CART meth-
od), whereas they differed greatly depending 
on fish species (Figure 2).

Given their good predictive performances, 
the calibrated models were then used to proj-
ect fish species distributions for year 2080 
under each of 12 GCM × GES combinations, 
assuming unlimited dispersal capacity of fish 
species (step 4, Figure 1). The future probabili-
ties of occurrence were then transformed into 
presence–absence values by using the same 
threshold value as for current predictions.

All procedures were repeated 100 times in 
order to increase the robustness of the results.

Quantifying Uncertainty in Species 
Distribution Forecasting

The three factors tested here (seven SDM × 
three GCM × four GES) resulted in 84 projec-
tions for each 35 species, each of which repre-
senting a possible state of future species distri-
butions in 2080. Following Thuiller (2004), 
we used a PCA on the projected presence–ab-
sence of fish species resulting from the 84 com-
binations of SDM, GCM, and GES. Although 
the use of PCA is faulted when used with bi-
nary data (e.g., nonlinear relationships), PCA 
using presence–absence data has been shown 
to perform well and to provide useful and in-
formative results (Hirst and Jackson 2007). 
These authors suggested that other multivari-
ate ordination methods could be used (e.g., 
principal coordinates analysis) to permit the 
use of resemblance measures more adapted to 
presence–absence data. To date, only PCA has 
been performed to summarize the outputs of 
species distribution model (i.e., probability of 
occurrence, Marmion et al. 2009) or species 
range shifts (Thuiller 2004; Araujo et al. 2005), 
and additional research is clearly needed.
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Figure 2.  Predictive performance of statistical models based on the predictions of current distribu-
tions: (a) area under the curve (AUC), and (b) accuracy (i.e., percentage of correctly predicted presence 
and absence) for the 35 fish species. Individual statistical methods (light gray) and consensus ap-
proach based on the averaging of the whole ensemble of predictions (dark gray—Mean) are presented. 
For each box plot, the median (line within the box), first and third quartiles (box), non-outlier range 
(wiskers), and outliers (dot) are shown. ABT = aggregated boosted trees; LDA = linear discriminant 
analysis; CART = classification and regression trees; GLM = generalized linear models; MARS = multi-
variate adaptive regression splines; and RF = random forests.

Here, the first PCA axis is equivalent to a 
line that goes through the centroid of all sets of 
model projections and minimizes the square of 
the distance of each set of projections to that 
line (Araujo et al. 2005). This axis thus cap-
tured consistent patterns in fish species distri-
butions across the different projections. If the 
84 projections were perfectly unrelated (i.e., 
all pairwise comparisons equal zero), each axis 

would explain 1/84 of the total variation. The 
variability explained by the first axis represent-
ed the consensus (i.e., the shared information) 
among the whole set of projections (Thuiller 
2004). This percentage of consensus was re-
lated to species occurrence using a generalized 
additive model.

Globally, the first axis of the consensus 
PCA explained 57% of the total variability 
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among projections across all fish species. As 
most other studies dealing with consensus 
projections under different combinations of 
uncertainty sources have not quantified this 
consensus (e.g., Marmion et al. 2009; Roura-
Pascual et al. 2009), comparisons with other 
taxonomic groups remain difficult. However, 
our result was consistent with the few studies 
that described consensus responses in predict-
ing impacts of climate change. For instance, 
Thuiller (2004) found a consensus axis ac-
counting for 56.1% of the variability in species 
turnover across projections for 1,350 Europe-
an plant species for 2050. Araujo et al. (2006) 
showed higher percentage of consensus in 
European amphibian and reptile responses 
with 80% of variability across the projections 
captured by the first axis, whereas only 29.9% 
of this variability could be summarized by a 
consensus axis for bird species in Great Britain 
(Araujo et al. 2005).

In this study, we also found that the per-
centage of consensus across projections varied 
greatly depending on fish species. It ranged 
from 30.8% (threespine stickleback Gasteros-
teus aculeatus) to 69.9% (gudgeon Gobio go-
bio) (Table 1). For 12 (i.e., one-third) of the 
studied fish species, the consensus was higher 
than 60%, whereas it was lower than 50% for 14 
fish species. This result indicated that the three 
uncertainty sources studied here (SDM, GCM 
and GES) could lead to very different projec-
tions in some cases (e.g., threespine stickle-
back, burbot Lota lota, and European bullhead 
Cottus gobio), whereas other species show very 
consistent projected distributions (e.g., gud-
geon, roach Rutilus rutilus, and European chub 
Leuciscus cephalus). Moreover, it appeared that 
the percentage of consensus was significantly 
(P = 0.011) related to fish occurrence. The 
percentage of consensus was the lowest for the 
rarest fish species (Figure 3), indicating that 
predicted future distributions of uncommon 

species would be more variable depending 
on the selected SDM × GCM × GES combi-
nation. This trend could be explained by the 
small number of occurrences used to calibrate 
the distribution models of rare species. Statis-
tical methods may actually vary in how they 
model the shape, nature, and complexity of 
species’ response (Guisan and Zimmermann 
2000). When few records are available, a spe-
cies ecological niche may be difficult to model 
and divergences between statistical methods 
may increase.

To quantify the relative contribution of 
each of the three uncertainty sources to the 
variability in projections of fish distribution, 
we related the entire set of projections to the 
three factors using a generalized linear model. 
We assessed the proportion of variability ex-
plained by each factor as the ratio between the 
deviance explained by one factor and the null 
deviance. This procedure was performed for 
each fish species separately.

Overall, variability in species projections 
was mainly explained by the statistical model-
ing technique (69.7%), followed by the GCM 
(24.4%), whereas variability across climate-
change scenarios was weak (5.9%) (Figure 4).

Here again, it is worth noting that the pro-
portion of variability explained by each factor 
varied greatly among fish species (Table 1). 
Indeed, for 5 of the 35 fish species, GCM ap-
peared to be the primary source of uncertainty 
in future species distribution, and emission 
scenarios were the secondary source of uncer-
tainty for six fish species. Addressing the rela-
tionships between fish species characteristics 
and the relative importance of different un-
certainty sources in species projections should 
thus be helpful to better predict the potential 
impacts of climate change on fish species distri-
butions. To date, the paucity of similar studies 
precludes a wider comparison, and additional 
investigations are thus clearly needed.
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Table 1.  Consensus analysis and sources of variability in fish species projections under climate change 
for 2080. Given are the percentage of consensus among the different projections and the percentage 
of variability in projections explained by the species distribution model (SDM), the global circulation 
model (GCM), and the greenhouse gas emission scenario (GES) for each fish species. Higher percent-
ages of consensus indicate a high degree of consistency between projections. Higher percentages of 
source of variability indicate that most of the variability in projections is due to the considered source 
of uncertainty.

 Source of variability

Family Fish species  Code Consensus SDM GCM GES

Anguillidae European eel Anguilla anguilla  Ana 68.10 55.82 14.10 30.07
Balitoridae Stone loach Barbatula barbatula Bab 62.38 93.56 6.03 0.41
Centrarchidae Pumpkinseed Lepomis gibbosus Leg 55.39 85.15 11.26 3.59
Cottidae European bullhead Cottus gobio Cog 41.45 78.72 4.97 16.31
Cyprinidae Bream Abramis brama Abb 62.69 97.16 2.00 0.85
  Spirlin Alburnoides bipunctatus Alb 53.53 48.66 48.00 3.34
  Bleak Alburnus alburnus Ala 69.86 87.98 11.04 0.98
  Barbel Barbus barbus Bar 62.36 55.37 35.35 9.28
  Mediterranean barbel 
  B. meridionalis Bam 45.08 96.34 0.13 3.53
  White bream Blicca bjoerkna Blb 49.94 66.98 29.68 3.34
  Crucian carp Carassius carassius Cac 45.18 93.35 2.06 4.60
  Nase Chondrostoma nasus Chn 50.35 60.58 38.12 1.30
  French nase C. toxostoma Cht 44.31 80.12 7.49 12.39
  Common carp Cyprinus carpio Cyc 58.90 88.68 8.11 3.21
  Gudgeon Gobio gobio Gog 69.91 94.76 2.45 2.79
  European chub Leuciscus 
  cephalus  Lec 68.72 30.24 53.81 15.94
  Eurasian dace L. leuciscus Lel 65.12 61.82 35.19 2.99
  Blageon L. souffia Les 48.04 37.89 47.58 14.52
  Eurasian minnow Phoxinus 
  phoxinus  Php 56.00 62.16 35.41 2.43
  European bitterling Rhodeus 
  amareus  Rha 58.18 43.95 54.85 1.20
  Roach Rutilus rutilus Rur 69.46 48.37 47.99 3.64
  Rudd Scardinius 
  erythrophthalmus Sce 45.23 58.05 39.64 2.31
  Tench Tinca tinca Tit 58.18 61.23 36.39 2.38
Esocidae Northern pike Esox lucius Esl 64.97 79.45 20.27 0.28
Gasterosteidae Threespine stickleback 
  Gasterosteus aculeatus Gaa 30.82 75.55 23.42 1.03
 Ninespine stickleback  
  Pungitius pungitius Pup 41.38 87.10 7.86 5.04
Ictaluridae Black bullhead Ameiurus melas Amm 41.32 77.48 21.78 0.75
Lotidae Burbot Lota lota Lol 35.52 88.03 11.67 0.30
Percidae Ruffe Gymnocephalus cernuus Gyc 59.42 94.25 5.60 0.16
 Eurasian perch Perca fluviatilis Pef 60.50 52.09 32.78 15.13
 Zander Sander lucioperca Sal 45.44 88.13 11.00 0.86
Petromyzontidae European brook lamprey 
  Lampetra planeri Lap 45.63 38.57 43.93 17.51
Salmonidae Atlantic salmon Salmo salar Sas 51.52 70.01 23.69 6.30
 Brown trout S. trutta fario Sat 62.54 60.65 24.47 14.88
 Grayling Thymallus thymallus Tht 42.26 41.20 54.50 4.30
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Figure 3.  Consensus across future projections 
of fish species distribution resulting from the 84 
combinations of species distribution models, 
general circulation models, and greenhouse gas 
emission scenarios for each 35 fish species as a 
function of the observed fish species occurrence. 
A generalized additive model (GAM) was fitted to 
model this relationship. Values predicted by this 
GAM are plotted (solid line) as well as their asso-
ciated standard error estimates (dashed lines).

Consensus Forecasting

Given the relatively low percentage of variabil-
ity explained by the GCM and GES in the dif-
ferent fish species projections, a single GCM 
(HadCM3), combined with a single emission 
scenario (A1FI), was arbitrarily chosen to as-
sess the potential impacts of climate change on 
stream fish assemblages. Nevertheless, to deal 
with the variability resulting from the species 
distribution models, we used consensus pre-
dictions that combined the whole predictions 
ensemble obtained from single models.

Consensus methods have recently been 
applied in broadscale conservation studies in 
order to deal with the variability due to SDM 
(Araujo et al. 2005, 2006; Hartley et al. 2006; 
Roura-Pascual et al. 2009). There are many 
different ways to build consensus predictions. 
Some methods are based on global (i.e., out-
put of several single models) median, mean, 
or weighted-average functions, whereas some 
others first retain certain methods based on 

Figure 4.  Percentage of variability among all pro-
jections explained by the three different uncer-
tainty sources tested: species distribution model 
(SDM), general circulation model (GCM), and 
greenhouse gas emission scenario (GES). See Fig-
ure 2 for details.

Recently, it has become clear that spe-
cies projections are sensitive to the statisti-
cal methods used to calibrate the models 
(Araujo et al. 2005; Elith et al. 2006; Pearson 
et al. 2006). Here, our results are consistent 
with those of previous studies that showed 
that variability across projections from differ-
ent modeling techniques could be large and 
may even hide the variability of using a range 
of climate-change scenarios (Thuiller 2004). 
Therefore, these results demonstrate that care 
must be taken when assessing the potential 
impacts of climate change from species distri-
bution forecasting and that special attention 
should be paid to choose the projections with 
best consensus, that is those that best sum-
marize agreements among ensemble projec-
tions generated under different uncertainty 
sources.
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selection criteria (e.g., AUC, PCA) and then 
combine these selected methods using an aver-
age or median function (Araujo and New 2007; 
Marmion et al. 2009). Marmion et al. (2009) 
suggested that the consensus method based on 
the computation of the mean value of the pre-
dictions ensemble provides significantly more 
robust predictions than all of the single models 
and other consensus methods. Thus, for both 
current and future periods, we averaged the 
current (step 5, Figure 1) and future (step 6, 
Figure 1) predictions across the seven statis-
tical modeling techniques, respectively. This 
resulted in a single prediction at each site, for 
each species and for each time period. We then 
converted these current and future consensus 
predictions into binary values using a threshold 
selected in the same way as described for single 
models. As for individual statistical models, we 
examined the performances of this consensus 
approach in predicting the current distribu-
tions of fish species on the validation data set. 
Across the 35 species, AUC averaged 0.86 6 
0.05, and accuracy 81.08 6 5.52% (Figure 2). 
Therefore, the consensus approach performed 
very well in predicting current distributions, 
even better than all the individual methods, 
strengthening the choice of this approach to 
evaluate subsequently the impacts of climate 
change on fish species.

Assessing the Potential Impacts of 
Climate Change on Stream Fish  

Species Distribution
First, we compared the current species distri-
bution with the potential future distribution 
for each of the 35 species by calculating the 
change in probability of occurrence between 
the current situation and the 2080 scenario for 
all 1,110 sites. A negative value indicated that 
the site would be less suitable than at present 
and a positive indicated increased suitability.

On average, changes in probability of oc-
currence ranged from –36.6% for brown trout 
(Sat) to 44.6% for blageon (Les) (Figure 5). 
Like results found for many other organisms 
(e.g., Peterson et al. 2002; Peterson 2003), 
individual fish species responded idiosyncrati-
cally to climate change. Nonetheless, three 
groups of responses to climate change could 
be coarsely identified (Figure 5). A first group, 
including seven species such as blageon (Les), 
European chub (Lec), or barbel (Bar), was 
characterized by a global increase in the prob-
ability of occurrence (on average, +25.6%). 
All of these species were cool- and warm-
water species with a large range of thermal 
tolerance. This positive response contrasted 
with the strong decrease in occurrence of 
two coldwater species—European bullhead 
(Cog) and brown trout (Sat)—for which 
none of the 1,110 sites would become more 
suitable in the future for this second group. 
Last, a third group of species composed of 26 
species such as roach (Rur), black bullhead 
(Amm), or northern pike (Esl) could have an 
intermediate response to these two previous 
groups. On average, these fish species would 
change their probability of occurrence by 
+5.6%, indicating a slightly positive response 
to climate change. Nevertheless, some sites 
could also become less suitable in the future. 
For these species, local extinctions in some 
areas would be compensated by colonization 
of new thermally suitable sites.

To analyze in greater detail the changes in 
fish species spatial distribution and to highlight 
potential range reductions or expansions, we 
compared maps of the predicted current and 
future distribution of some species. The results 
were illustrated for one species of each group 
described above: barbel (Bar), northern pike 
(Esl), and brown trout (Sat) (Figure 6).

Barbel, a rheophilic species relatively com-
mon in French streams, was predicted to ex-
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Figure 5.  Changes in the probability of occurrence for each of the 35 fish species predicted for 2080 
under the scenario HadCM3 A1FI. Change is expressed as the difference between the consensual cur-
rent and future predictions resulting from the averaging of the seven statistical methods. See Figure 2 
for details and Table 1 for species codes.

Figure 6.  Predicted spatial distribution of three fish species (barbel, northern pike, and brown trout) for 
current (1961–1990) and future (2051–2080) periods.
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pand its range greatly under climate change. 
The consensus model did not predict any 
extinction, but rather, barbel may be able to 
colonize a large number of areas where it does 
not currently occur, for example the Pyrenees, 
Massif Central, and the Jura mountains. It 
could also expand its range to northwestern 
France. Northern pike, a predatory species liv-
ing among dense vegetation, was predicted to 
move to new suitable habitats mainly in east-
ern France and in mountainous areas, whereas 
it could suffer from local extinctions in the 
western part of France where it currently oc-
curs in many sites. Finally, brown trout was 
predicted to be the most severely affected by 
climate change and to be most restricted rela-
tive to its current distributional area. Indeed, 
brown trout is a salmonid species living in cold 
and well-oxygenated waters mainly in the head 
of the watersheds. The consensus model pre-
dicted this species to be currently distributed 
in mountainous regions (e.g., Pyrenees, Alps, 
Massif Central, and Jura) and also in coastal 
streams of northwestern France. But in 2080, 
brown trout may become extinct in a large 
number of these areas and restrict its distribu-
tion to the most upstream sites of the moun-
tainous regions and some streams of north-
western France, where habitats could remain 
suitable for the ecological requirements of this 
species.

Our results thus illustrated that coldwa-
ter species living in headwater streams would 
undergo a very deleterious effect of climate 
change by reducing their distributional area, 
whereas cool- and warmwater fish species oc-
curring currently downstream would expand 
their range by migrating to sites located in in-
termediate streams and upstream.

Overall, these results were in agreement 
with those obtained in North America, which 
consistently predicted a decrease in salmonid 
distribution but divergent results for cool- and 

warmwater species. Those species could ac-
tually increase or decrease their distribution 
depending on species and studies (Eaton and 
Sheller 1996; Rahel et al. 1996; Mohseni et 
al. 2003; Chu et al. 2005; Sharma et al. 2007). 
Nevertheless, compared with other taxa for 
which the impacts of climate change could 
be very detrimental (e.g., Thomas et al. 2004, 
2006; Jetz et al. 2007), the global assessment 
for French stream fish species was rather posi-
tive as most fish were predicted to expand their 
distributional area. This global positive impact 
of climate change on stream fish distribution 
may result from the scarce diversity of cold-
water species in French fish assemblages com-
pared to cool- and warmwater species, which 
have a larger range of thermal tolerance.

Assessing the Potential Impacts of 
Climate Change on Stream Fish  

Assemblages
Two measures were used to assess the poten-
tial impact of climate change on fish assem-
blages in French streams. First, we calculated 
the predicted current and future local species 
richness in each of the 1,110 sites by summing 
the predicted current and future present spe-
cies obtained from the consensus predictions, 
respectively. Current and future species rich-
ness were then compared. Second, we calcu-
lated the number of species predicted to newly 
arrive (species gain [SG]) and the number of 
species predicted to no longer be present in the 
future (species loss [SL]) in each site. We thus 
estimated the percentage of species turnover 
as

 
Species turnover   

SG SL
SR SG

= ×
+
+

100
, (1)  

where SR is the current species richness (Pe-
terson et al. 2002). A turnover value of zero 
indicated that the predicted assemblage in the 
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future would be the same as the current assem-
blage, whereas a turnover value of 100 indicat-
ed that the assemblage would be completely 
modified under climate change.

Both the change in species richness and 
the turnover rate were related to the upstream–
downstream gradient G using generalized ad-
ditive models in order to highlight potential 
spatial patterns in the response of fish assem-
blages to future climate change. Indeed, the 
upstream–downstream gradient, which struc-
tures watersheds, is known to influence great-
ly the distribution of individual fish species 
(Buisson et al. 2008) and, thus, the structure 
of fish assemblages.

Mean local species richness was predicted 
to increase strongly from the current 10.3 6 
8.0 species per site to 19.5 6 7.3 species in 
2080. Only 20 sites would show a decline in 
species number, whereas at least 10 species 
would be gained in 43% of the 1,110 sites. 
The change in species richness would vary ac-
cording to the position along the upstream–
downstream gradient. Indeed, the relationship 
between the change in species richness and 
the position along the upstream–downstream 
gradient G was slightly bell-shaped (Figure 
7). This indicated that species richness would 
have the largest increase in the midstream sites, 
which are mainly located at medium elevations 
(e.g., foothills at the base of the Pyrenees and 
the Alps mountains), whereas downstream 
sites would be colonized by a limited number 
of species. The most upstream sites would also 
gain new species, but more moderately than 
midstream sites.

On average, turnover equaled 67.0 6 
26.2% (mean 6 SD across the 1,110 sites). A 
turnover value higher than 50% (i.e., at least 
half of the current pool of species in a site could 
be changed in the future) was achieved in more 
than two-thirds of the sites. Species turnover 
was negatively related to the upstream–down-

stream gradient (Figure 7), indicating that up-
stream assemblages would be highly modified 
due to the arrival and/or the local extinction 
of species. On the contrary, very few changes 
would occur in the composition of down-
stream assemblages.

The predicted large increase in fish species 
richness in French streams very likely resulted 
from the great number of positive individual 
responses of cool- and warmwater fish species 
to climate change. As French fish assemblages 
contain few coldwater species, more fish spe-
cies would expand their distribution to newly 
suitable areas than reduce it. This result is in 
agreement with the increase in species rich-
ness, which has already been observed for 
marine (Hiddink and ter Hofstede 2008) and 
freshwater fish species (Daufresne and Boët 
2007) during the past decades, but also for oth-
er organisms (e.g., plants: Grabherr et al. 1994; 
butterflies: Menendez et al. 2006). However, 
results are more contrasted when predicting 
species richness in future (e.g., plants: Broen-
nimann et al. 2006; mammals: Levinsky et 

Figure 7.  Predicted modifications of fish assem-
blages along the upstream–downstream gradient 
for 2080 under the scenario HadCM3 A1FI. Pre-
dictions (solid line) and associated standard error 
estimates (dashed lines) from fitted generalized 
additive models are shown. 
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al. 2007; butterflies: Wilson et al. 2007). For 
freshwater fish, our results are overall concor-
dant with those found by Minns and Moore 
(1995) in Canada, where an average increase 
in species richness of 31.8 species for the stud-
ied tertiary watersheds was predicted.

Although appearing as a fairly positive as-
pect for fish fauna diversity, an increase in spe-
cies richness may, however, hide local extinc-
tions of species and lead to great changes in 
the structure of fish assemblages. Our findings 
suggested that fish assemblages’ composition 
in French streams could be strongly modified 
under climate change. The species turnover 
rate was slightly higher than the turnover rate 
predicted for the Mexican fauna (Peterson 
et al. 2002), the endemic flora in southern 
Africa (Broennimann et al. 2006), the mam-
mals in African national parks (Thuiller et al. 
2006a), or the European plants (Thuiller et al. 
2005). Despite the small loss of fish species 
from their current suitable sites, severe eco-
logical perturbations may thus occur in future 
and species’ association shifts may cause sub-
stantial changes in assemblage structure and 
function.

Last, we predicted that changes in species 
richness and assemblages’ composition could 
be highly contrasted depending on the loca-
tion along the upstream–downstream gradi-
ent. Upstream assemblages could be the most 
sensitive to climate change as species richness 
was predicted to increase greatly and the as-
semblages’ composition to be highly modified, 
whereas presently, these assemblages have low 
diversity. In comparison, downstream assem-
blages could be more resilient. These findings 
highlighted the importance of topography 
and local factors when assessing the effects of 
climate change on species. They could have 
important implications for identifying stream 
reaches and geographic areas that would need 
priority conservation measures.

Some Limitations to the  
Assessment of Potential Impacts of 

Climate Change

Although the predicted impacts of climate 
change on stream fish species and assemblages 
were obtained from an ensemble forecasting 
approach, which appears a robust predictive 
method (Araujo and New 2007), they should 
only be viewed as potential future impacts. 
Indeed, we only identified the future habitat 
suitability for fish species, and its possible con-
sequences on fish assemblages, without taking 
into account many factors acting at different 
spatial or temporal scales which could hinder 
these changes to occur (Pearson and Dawson 
2003; Dormann 2007).

First, both natural and physical barriers 
may obstruct fish displacements to newly suit-
able sites. In this study, we assumed that a giv-
en species could reach every site within France 
that would become suitable in the future. Al-
though France has a large system of canals 
linking the internal river units, thus allowing 
potential interwatershed transfer of aquatic or-
ganisms, adjacent rivers may, however, be dis-
connected if they are not included in the same 
watershed. Natural dispersal of fish species to 
river units where they do not occur at present 
may thus be limited by the insular nature of wa-
tersheds, but also by artificial obstacles such as 
weirs or dams, which result in stream fragmen-
tation. Moreover, fish species may be unable to 
disperse at a sufficient rate to keep up with the 
changing climate. In the present study, we as-
sumed that all the 35 fish species have the same 
dispersal ability. Although very common, this 
assumption is critical as dispersal ability is re-
lated to species’ biological characteristics (i.e., 
size: Jenkins et al. 2007) and life history traits 
(i.e., reproduction).

Second, we evaluated the potential im-
pacts of climate change on fish species occur-
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ring within French boundaries. An underly-
ing assumption was that there was a barrier 
around France, thus preventing any other spe-
cies from colonizing French streams regardless 
of whether suitable habitat could appear under 
climate change. Predicted changes in species 
richness and assemblages’ composition could 
be greatly underestimated if suitable habitat for 
species outside France would exist in future, 
especially in downstream parts of river units 
where very few changes are expected. These 
nonnative species could also become invasive 
and, like nonnative species occurring presently 
in French streams, have an additional negative 
effect on species already suffering from range 
reductions or displacements caused by climate 
change. Indeed, these nonnative species have 
often wider environmental tolerances and may 
be more resilient to climate modifications than 
native species. Jackson and Mandrak (2002) 
illustrated this effect by showing that small-
mouth bass Micropterus dolomieu, a predatory 
fish species, would largely expand its distribu-
tional area in Ontario under climate change 
and cause the extirpation of more than 25,000 
populations of four cyprinid species. In our 
study, the five nonnative species occurring in 
French streams (i.e., black bullhead, crucian 
carp, common carp, pumpkinseed Lepomis gib-
bosus, and zander) were not among the fish spe-
cies that were projected to colonize the largest 
number of sites under climate modifications 
(except pumpkinseed, Figure 5). Nonetheless, 
even slight changes in their distribution should 
be watched in future as they could cause local 
extirpations of species already vulnerable to 
climate change by increasing competitive in-
teractions. Besides, taking into account such 
biotic interactions in the assessment of future 
impacts of climate change should urgently be 
addressed (Pearson and Dawson 2003; Guisan 
and Thuiller 2005). Here, we used a species-
specific modeling approach and then com-

bined the individual predictions to evaluate 
the impacts on fish assemblages. We thus as-
sumed that the habitat suitability for a species 
was independent from the presence of other 
species. However, some of the predicted future 
assemblages are composed of species that did 
not occur together, historically. Therefore, the 
sustainability of such assemblages in the long 
term remains questionable.

Conclusions and Implications

The ensemble forecasting framework and con-
sensus approach used in this study allowed us 
to assess the potential impacts of the ongoing 
climate change on French stream fish species 
by considering uncertainty due to some meth-
odological issues such as the choice of the 
statistical methods. The predictions indicated 
that climate change will very likely affect fish 
species and thus result in fundamental changes 
in the composition and structure of fish assem-
blages. As expected, coldwater species would 
suffer from range reductions and local extinc-
tions, whereas cool- and warmwater species 
would expand their range to newly suitable 
habitat, provided that they could be able to 
disperse to these areas. Given the small num-
ber of coldwater species in French streams, 
fish fauna could be more diverse in future, but 
fish assemblages completely modified. None-
theless, many obstacles will arise before the 
existence and sustainability of such predicted 
assemblages. Contrasting impacts of climate 
change on stream fish assemblages along the 
upstream–downstream gradient revealed the 
importance of accounting for environmental 
gradients (e.g., altitudinal gradient) to predict 
more accurately the response of fauna and flora 
to climate change in forthcoming research.

Last, these findings should be viewed in 
terms of conservation and management strat-
egies. Upstream areas would actually serve as 
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refuge areas for coldwater species as well as 
new thermally suitable regions for cool- and 
warmwater species, whereas fish assemblages 
located downstream would be more resilient. 
This could have important implications in 
identifying stream reaches and geographic 
areas that would need priority conservation 
measures in response to climate modifica-
tions. Moreover, species predicted to be the 
most favored by climate change are either 
common species with low ecological or com-
mercial importance (e.g., European chub) or 
exotic species (e.g., pumpkinseed). The spe-
cies with the highest risk of local extinction 
is brown trout, which has a high recreational 
and commercial value and is also considered 
as a good biological indicator of river health. 
French streams and rivers could thus lose a 
large part of their supply of economic and 
ecological resources.
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